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Thermodynamic modeling cPrL

m The CALPHAD method is based on the thermodynamic modeling of solution phases and
stoichiometric compounds

m For all solution phases, the Gibbs energy G must be determined

] hys
G =G+ Gl + GEX + Gy,
— 0 ] T
Contribution
of pure elements Ideal mixing
contribution

physical contribution
(e.g. magnetic)

Contribution
due to non-ideal
interactions

®m Solution phase = solid solution (e.g. FCC, BCC, HCP....) or LIQUID

B Thermodynamic modeling implies the mathematical description of each phase, thereby
considering the physical properties of the phase (e.g. lattice structure, Cp, etc.) as precisely
as possible
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Thermodynamic modeling cPrL
Pure elements

®m The integral Gibbs energy of a pure element ¢ in the state i (neglecting p) is
G’ (T)=H-TS
B Considering the definitions of H and S this can be written as
T T C
GP(T) = HZER +j0 C,dT — Tjo ?pdT
with HSER: enthalpy of the element/substance in its defined reference state at 298.15K and 1bar
B Inthe case of elements, the functions recommended by Scientific Group Thermodata Europe

(SGTE) are generally used for representing Gl.(p:
GP(T) = G/ (T) — HER = a + bT + cTIn(T) + dT? + eT® + fT~ 1 + gT” + hT°

Where a, b, c are the model parameters

B For ferromagnetic substances, a magnetical ordering term G,‘Zag needs to be added:
Ginag(T) = RTIn(1 + B)g(7)

where t= T/T,, T, is the critical temperature for magnetic transition, p is the magnetic moment in Bohr magneton and g(t)
is the magnetic ordering function

Advanced Metallurgy — 2024/25 Thermodynamic and kinetic modeling and simulation 3



Thermodynamic modeling “PFL
Stoichiometric compounds

B The same approach can be extended to model the Gibbs energy function of a stoichiometric
compound 6

G2(T) = z viH?E® + A+ BT + CTIn(T) + DT? + -
i
where A, B, C. . . are the model parameters and v, are the stoichiometric coefficients for the elements that make
up the compound
® For compounds with zero C, of formation or where C is not known, a simpler expression can
be used

GOT) = ) WG] + BHO = TApS® = w6l +1+]T

l l
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Thermodynamic modeling
Example: Gibbs energies of phases in pure iron
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Thermodynamic modeling cPrL
|deal solutions

m The simplest model for binary solutions is the ideal e O. % .O.O.(: @
solution model Se0 o ® % o® 3 PS

B It can readily be extended to solutions of higher order ) .oo.g OO..O ..O %
(more components)

m Its assumptions are that

m the distribution of the atoms A and B is completely random

® the exchange energy between atoms of type A and B is

equal to the average exchange energy of A-A bonds and B-
B bonds.

Gy = Z x;GY + RTZ x;Inx;
' i

l
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Thermodynamic modeling cPrL

Regular solutions

B Inregular solutions the exchange energy in A-B
bonds is no longer equal to the average of the bond
energies of A-A and B-B bonds.

® A mixing enthalpy AH,,;,, = 01X, X5 needs to be

z: coordination number

added Ce0e000000

m (isa(temperature dependent) parameter that Q0000000
describes the interaction between A and B atoms 00000060
Q=N,z <€AB _ <£AA ‘|2' 8BB>> N,: Avogrado constant 0000000

GE = z x;GY + RTZ x;Inx; + Z z X %€
l. .

i P j>i
m Depending on the type of bonds, (<0 (A and B “like”
each other) or >0 (A and B “dislike” each other)
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Thermodynamic modeling
Regular solutions

B Case Q<0: A and B “like” each other
®m G, remains concave at any temperature
and the enthalpy of mixing only reinforces
the “attractiveness” of A and B atoms.

T high
B Case 0>0: A and B “dislike” each other
® At high temperature, -TAS,, still
dominates and G, remains concave. At
lower temperature, the enthalpy of
mixing dominates and can lead to
demixing (miscibility gap).

Advanced Metallurgy — 2024/25 Thermodynamic and kinetic modeling and simulation 8



Thermodynamic modeling cPrL
Real solutions

B Real solutions deviate to variable extent from ideal or regular solutions. The reason
for this can be that
1) The exchange energy of A-B bonds is not independent of the composition (no unique
Q);
2) The interaction between atoms of different type leads to a preferential arrangement of
atoms A-B (instead of a random arrangement)

3) Atoms can only take certain positions in a crystal or the liquid (e.g. for topological (size)
or chemical reasons)

B These aspects are considered in

1)  The (sub)"-regular solution model (no physics, just numerical)
2) The sub-lattice model
3) The quasi-chemical approach
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Thermodynamic modeling “PFL
Real solutions — the (sub)"-regular solution model

The enthalpy of mixing is not necessarily symmetric and higher order terms allow introducing
some degree of skewedness to the enthalpy of mixing curve

The Gibbs free energy is give as
GE = z x;GY + RTZ x;lnx; + z z XiX; z L (x; — x))*
i i i j>i k
Where L’{'j is a binary interaction parameter dependent on the value of k; L’i‘j=Ak+BkT+CkTInT+...

This numerical approach, which facilitates the calculation of phase diagrams, is the Redlich-
Kister formalism
Examples for binary alloys of A and B

m  Regular solution: L5 # 0, L%, (k> 1) =0

m  Sub-regular solution: LY, Lz # 0, L%, (k>2) =0

m  Sub-sub-regular solution: L, L5, L35 # 0, 1%, (k>3) =0
In some cases higher order interaction might not be neglected and a ternary interaction
parameter is introduced: G%. = xaxpxcLE 5
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Thermodynamic modeling “PFL
Real solutions — the (sub)"-regular solution model

B The sub-regular solution model is used for substitutional
phases such as liquid, bcc, fcc, etc. 4000

= AH_mix
. . . 3000 | —regular term
B |t cannot be used for interstitial solutions, ordered e eI
intermetallics or ceramic compounds 2080 . avarem

1000 © Argawal & Sommer

m There is little evidence for the need of interaction
parameters of any higher order than 2
B Prediction of thermodynamic properties of substitutional
phases is based on binary and ternary terms
B Example: enthalpy of mixing of liquid Mg-Zn
B experimental data from calorimetry measurements
m  Data fitting leads to
Ly g—zn.1iq= -23500 kl/mol 7000

L%/Ig—Zn,liq= 3500 kJ/mOI Molar fraction of Zn [-]
L31g-zn,1iq= -3500 kl/mol
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Thermodynamic modeling

=P

Example: influence of interaction parameters on phase stabilities
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Thermodynamic modeling
Example: influence of interaction parameters on phase stabilities
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cPrL
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Thermodynamic modeling “PFL
Real solutions — extrapolation to higher order systems

B Extrapolation of thermodynamic properties of alloys into multi-component systems is based
on the summation of the binary and ternary excess parameters
B The formulae for doing this are based on various geometrical weightings of the mole
fractions
B Muggianu’s model: ) %
Grixapc = XaXp{lap + Lag (x4 — xp)}
+xpxc{Lyc + Lpc(Xp — x¢)}
+xAxC{LgC + Ly (xa — xc)}

A .
m Kohler’s model: -
Xy Xg XA — XB
ex 2 0 :
. =(xX4— X : L +1L A
mix,ABC ( A B) Xqg+Xp Xg+ xB{ AB AB (xA + x]g)} ®
Xp Xc 0 1 XB ~ Xc
+(xg — x¢)? T {LBC + Lic
Xg + Xxc X+ x¢ Xp + X¢
X4 Xc 0 1 (XA — Xc
+(xq — x¢)? : Lyc +1L A
(x4 c) XAt Xe Xt xc{ AC AC Xa + %o Kohler
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Thermodynamic modeling
Real solutions — the sublattice model

A sublattice (SL) phase is conceptualized as a combination of
interlocking sublattices where various components can mix

The model is phenomenological, focusing on macroscopic behavior, and
does not inherently define any specific crystal structure (but can)

Consider a phase with N distinct lattice sites, each forming a SL; the fractional site occupation of
components on the different sublattices are:

S S
S — i or including vacancies y§ = o
Yi = 3s g Vi =

Nyt N
Where n] number of atoms of component i on sublattice s; N* totI:IL numlber of sites on the sublattice
Mole fractions are related to site fractions according to
XNy
S XN - ypa)
The ideal entropy of mixing is made up of the configurational contributions from mixing on each SL

Gl = TS = RTZ styflnyf
S i

Xi
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Thermodynamic modeling =PFL
Real solutions — the sublattice model

B Lattice occupation: AD BP
m Consider a sublattice phase consisting of the elements A, B, C,
and D y
® Aand B share the same sublattice and C and D are confined to v
another sublattice: (A,B),(C,D),
B End members
m  Four "complete occupation" configurations exist, representing AC e BC
pure combinations: pure A or B on SL1 and either pure Cor D on
SL2 a7
m These four configurations are referred to as "end members" and E‘*ﬂ e
define the reference Gibbs energy surface. 0 ‘};EC feo
B The Gibbs energy of the phase is a combination of the end Gac™"

members, calculated as:
Grrnef = YaYcGac + YsYcGpe + YaypGip + YeYpGop
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Thermodynamic modeling =PFL
Real solutions — the sublattice model

m Consider again the two-SL system (A,B),(C,D),

B The interactions A-C, A-D, B-C, B-D are controlled by the Gibbs energies of the compounds
AC, AD, BC and BD

B Mixing on the SLs controls A-B and C-D interactions and

ex _ .,1.,170 1.,170
mix = YaYBLap« + YcYpLwcp

B A sub-regular model can be introduced by making the interactions compositionally
dependent on the site occupation in the other SL

o e = VaVeVeLldp.c + VAVEYELA g + YEVEVALA.cp + YEVDYELY.c D

B |tis possible to add some site fraction dependence to these parameters

e.8 Lyp.c =VAVsvé X Lipc A —v5)"
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Thermodynamic modeling =PFL
Applications of the sublattice model

B The sublattice model is one of the most predominant methods used to describe solution and
compound phases, e.g. for

B Line compounds in ternary systems
m e.g. Laves phase Fe,TiSi — (Fe),(Ti),(Si),
B Interstitial phases,
m e.g. carbides — (Fe,Cr,Ni,...), (C,Va),,
®  Complex intermetallic compounds with significant variation in stoichiometry,
®m e,g. Fe;Al—(Fe);(AlVa),
m Order-disorder transformations
m e.g. Cu;Au —disordered phase (Cu,Au), ; ordered phase (Cu);(Au),
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Thermodynamic modeling “PFL
Real solutions — the quasi-chemical approach

B The regular solution model assumes a random distribution of atoms even though the
enthalpy of mixing is not zero

® In reality, a random solution is only expected at very high temperatures when the entropy
term overwhelms any tendency for ordering or clustering of atoms; the atom arrangement is
no longer random and the entropy of mixing, AMxS, may differ from the ideal value

B The quasi-chemical approach takes into account that the interactions between atoms Aand B
are more or less energetic, which leads to preferential formation of A-B bonds (Q<0) or A-A
and B-B bonds (Q>0)

B The model is so—called because it has a mass—action equation which is typical in chemical
reaction theory
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Thermodynamic modeling cPrL

Real solutions — the quasi-chemical approach

Consider a binary system A-B of N atoms with the concentration x, and xg

To understand the principle, the situation where the atoms are arranged on a 1-dimensional
lattice is considered (“Ising”-model)

N = & &

The total number of bonds emanating from an atom of type A are x,Nz, with Z the
coordination number of an atom (Z=2 in the 1D case)

Of all the bonds emanating from an atom of type A, bonds of type A-B and of type B-A have to
be subtracted (the A-B bonds are not interchangeable with the B-A bonds)

m  Number of A-A bonds: Ny, = %(xAZN — Nyg — Nga)
| Number of B-B bondS:NBB = %(xBZN_NAB _NBA)
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Thermodynamic modeling “PFL
The quasi-chemical approach — enthalpy term

® The total number of heterogeneous bonds, Ny, is Ny, = Nag + Ng, and the number of A-B
bonds is equal to the number of B-A bonds: N,z = N,; The total number of bonds is NZ/2

® The concentration of bonds, n,, of the different types is:

_ N Ny AN AN | (1, 1 =[x - et
nAB-W nAA_g_ Xa 2% EE =|Xa 2nAB 2”BA =|Xa 2
2 N +N, 2 2 2
n, =—* BA
nBA=?\,‘,-? % n _NBB_X_1NAB_1NBA _[JX_1n —117 _X_nhet.]
= BB_W_ B EW EW - B 5 AB E BA | T B 2
2 2 S

® These bonds contribute to the Gibbs free energy with y,,, Vgs, and v,z (energy from the bonds)
for A-A, B-B, and A-B as well as B-A bonds, respectively. The total Gibbs free energy, G, is then

NZ NZ((
G(N) = 7(”AA}’AA + MtV ag + Mesles ) =715, = 2((

n, n.
het het |,
Xa— 2e )3’AA+nhe1?’AB+(XB_ 2e ]}BB)_TSL‘

NZ NZ [ Vox +
G(N) = 5 (XA}’AA + XB}’BB) + > [nhet (}’AB _(' A > 28 )]]_ TS,
\ S - : J
i

X,Gu(N)¥ x,Ga (V) A™G(N)
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Thermodynamic modeling cPrL

|
The quasi-chemical approach — entropy term

B Assume that there is no contribution to entropy by e.g. change in lattice vibrations due to the
A-B bonds (}_%](_%]

® The total configurational entropy of the system of bonds, S ,,n4s, Can be calculated as

Nz, Nz,
S, onds = K5 INWY; W=N " fNAE' ; o {nm NEZ]'(HBB szf(% !\;ZNHBA!\;Z.]!
B With Sterling’s formula, i.e. In(x!) = xIn(x), this can be written as:
S ponce = Ka H—]In(— —{:nM ]In(nM sz | (nBB?.}In[.nE,Bgf—(nAB7:]In[‘nAB "\;Z . 'nEA . ]|n(nBA ’\;Z J
Sum - A;Zkg{m( ] N In[ ]‘”Ee|n(nBBf\fE_Z"]—nﬁsln(”Asf\;—Z‘]—”aA'n:_”BA%:]}
S e - f\fk};{ln( )+In(—') P In(nBB]JrIn(A;Z” AB[im[ AB)+|n[N22]] BA[.:In[nBA}+In(!\’22:};)]
S poree = ";Zkgb (_ (1M~ e =i~ o) =)~ 1)~ g (1)~ )|
S = —%kg M3 IN(Ma4) + Mg (g ) + g () + 1 In ()|
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Thermodynamic modeling
The quasi-chemical approach

In calculating the configurational entropy of the bond system, it
was considered that A-B bonds, A-A bonds, B-B bonds, and B-A
bonds are permutable amongst themselves

However, A-B bonds are different from B-A bonds (not in their
energy but with regard to permutability)

It was assumed that the bonds can be placed randomly on the
lattice of bonds, but there are already some restrictions on the
Ising chain model

B e.g.an A-A bond cannot be next to a B-B bond, neither can an A-B

bond be to the left of a A-A bond (but a A-A bond or a B-A bond can).

The arrangement of the bonds is hence somehow restricted (2
2D model)

Accounting for this in a 3D network of bonds in a detailed way
becomes awfully complicated

cPrL

" ®:

1**

—¢T‘I' T
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Thermodynamic modeling “PFL
The quasi-chemical approach

The entropy cannot be larger than in a fully random arrangement of the atoms.

For 1 mole (i.e. N = Na) of a binary mixture of atoms, the maximum configurational entropy is
attained when xA = xB = 0.5 and Sc,atoms = RZIn(2)

If we do the same calculation for the bonds, again for 1 mole of atoms, the maximum s
obtained when nAA = nBB = nAB = nBA = 0.25, and its value is Sc,bonds = RZIn(4)/2

It cannot be that the configurational entropy changes just because we looked at another
entity, i.e. bonds rather than atoms

the entropy calculated for the bonds can be normalized with regard the one obtained for the
atoms by looking at their respective maximum value and assuming that also outside the

maximum with the normalization factor @

® = Sc,atoms — 21n(2) — l
Sc,bonds Zln (4) Z

The molar Gibbs free energy of mixing Gmix, as a function of the bond concentration of
heterogenous bonds
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Thermodynamic modeling “PFL
The quasi-chemical approach

®m The molar Gibbs free energy of mixing G,,,;,, as a function of the bond concentration of

heterogenous bonds becomes
|

amig N N,Z

Z N+ T —2—0k
2 2

n.\ n on
2 [XA _ Thet |n[XA _ Z'het + het hel |n( het hel |n( het
_ 2 ) 2 3; 2 EA 2

‘ LS — S [—) [A—

Mg, N Nyg Ny Ms Ny Tea Ny,

® The equilibrium value for the bond concentration ny is found when G, is minimum
m  Setting the 1t derivative 0, rearranging and considering ®=1/Z

TR [ln (xA — n;et) + In (xB — n;et) — 2In (n;et)] = 2N Zw

20) (x —M)(x _M) [n44llngs]
wonsaea wn(2)-CEY )l

Looks like mass-action:
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Thermodynamic modeling “PFL
Applications of the quasi-chemical approach

B The quasi-chemical approach is particularly effective in modeling non-ideal systems where
interactions between components lead to significant short-range ordering, clustering, or
other non-random atomic arrangements.

m Description of short-range order in Cu-Zn or Ni-Cr alloys
m Description of miscibility gaps in the Ni-Cr and Fe-Cr systems

m Description of ionic systems, such as molten salts or ceramics

Advanced Metallurgy — 2024/25 Thermodynamic and kinetic modeling and simulation 26



Thermodynamic modeling cPrL

Example: assessment of the binary Ge-Ni system

Weight Percent Germanium
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Thermodynamic modeling “PFL
Example: assessment of the binary Ge-Ni system

B Work flow for thermodynamic assessment
m Review of literature data

®m  Own measurements (phase diagram, calorimetry)
® Thermodynamic modeling

Modeling of pure elements  °G{(1)=G{(I)~H*™ =a+bT+cT In T+dT*+eT? +fT~! +gT” +hT~?
Modeling of solution phases G = >~ x°G] +RTS_ x; In(x) + EGJ, + ™26

mn
FGih = XceXni }; PLgeniXee=Xni) D[ A LBTLGTINT  ™8GY —RT In(f? + 1)f z)

Modeling of ordered phases G, = G&™(x;)+ G2 (y;,y1)— Go(x;)

Modeling of B8-type non-stoichiometric compound Ni.Ge, OGNisCes _ OGDIAMONDA4 | OGFCCAL | py T
9 3-SUb|attlce mOdeI (Ge)(N')(Va,N') chsgm:ocg?mwuwurzocglccﬁ+E'+F'T

NisGes _ 110 ~NisGes 110 ~NisGe3 ] I, Il , E~NisGes EGNiGes _ i i NisGe,  [NEGE NS (G Tyl
G =Y, Gooney ot Vi Goenini+ RTVR In i+ Y0 Inyve) + Gy, me% = WorNLeeRan  Loenivam = 2 (GntHaDOR -

Modeling of stoichiometric phases

NiGe __ ( =0 ~FCC_A1 0 ~DIAMOND_A4 .
Cm = =05"Gy +0.57Gge +a+b NiGey, _ X 0 FCCAL | y 0;DIAMOND_A4

- +Ini,ce, +Jnice, T
+cTInT+dT? el 4T '+ T " x+y M Xty NiGey i ey
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Thermodynamic modeling cPrL

Example: assessment of the binary Ge-Ni system

m  Work flow for thermodynamic assessment
B Parameter optimization (= least-square fitting algorithm in Thermo-Calc)

Table 2
Thermodynamic parameters of the Ge-Ni binary system.*

Phase Thermodynamic parameters
L . AN - INi 0 ~SMis Cex 0 ~DIAMOND_AS _ OFCC AT
Liquid: (GeNi), oLl _ 167121320+ 155T-15TInT BNisGes: (GE)y2s(Nilyrz Gidiate: _p 28%GEY 0729GE 34918+ 3,607
LT _84737.489 -25.014T ) ) . —— R
2Lt _ 33441 500 16,0017 NiGe: (Gelazas(Nidsss Gher 3350 GRIAMONDAS _p 66SOGHS AT = —38227.151+4.849T
31LmE _ 63650323421 9837
NisGes: (Ge)Ni)Va,NifF Ogistes _OGUIAMONDAS_OCFCCAT _ _54786.3045.624T
FCC_A1®: (Ge Ni), 9FECA _ 122000+ 36 88T )
! *'."f;-..:‘f‘ =134000-46 8T Ogiie OGDAMINDA_H0GHEA _ _110540+11.717T
O7cfeem — 3750
. — O Ni; G -
ANisGe® (Ge,Ni Jars{Ge,Nilazs e 7a0GUAMOND A 9g0CREAT _ 46837102 4 3.05T Ledidye =—2655.913-2.932T
e = 17558144
UG-TZ’:‘ —0.259GRMANEA_p 750 GHT = 46827192+ 3.05T £ NisGes: (Gelazss(Nigms ucr;tt.e; —0.3750GRAMONDA _ g g0 ECCAT
Oginte_0DAMONDAS _p —-37350.646 +3.328T

‘v e =0
LB, = —93654.384+ 6.1T . . 0 hice 0 DIAMOND_A4 0 ~FCC_AL
Oy 3654 384 16,17 NiGe: (Ge)g.s Nilos Gléice _g 5000 —0.59GE¢
! =—-30992.547 +0.967T—0.1T In T +6.015E—05T*
1MeG _ 33700-9.72T
Ce NiCe T 1
! —9.471E—08T* +2,393F—22T" — 14960.491T
e _ 93700-9.72T

MRS =0

ui.rat =0 * Gibbs energies are expressed in Jmol. The lattice stabilities were given by Dinsdale [44]

‘L:'“”"" — 7900—3.24T ¥ The ordered phase fMNizGe with L1, structure and disordered phase FCC_A1 are modeled as the same phase.
"Ni-Ce N ) © The sublattice model of the NisGe; phase is given as integral stoichiometry since 1/3 cannot be exactly

e — 7900-3.24T expressed as a decimal.

NisGe: (Gelozse Nidiaa OG[rnce 0,256 GRAMONDAS_0 7440GEECA — 34315 44 301T
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Thermodynamic modeling cPrL

Example: assessment of the binary Ge-Ni system

B Work flow for thermodynamic assessment
m  Comparison simulation vs experimental data

1800 . L 0 I 1 1 L
[0 Castanet 1288 K (1979) a
-5 @ Sudavtsova et al. 1800 K (2007) = 1800 L L L I 1450 L L
Ligquid iy A Shiapak eral. 1773 K (1980) . \q 0 Diayer et af. VTA (1980}
1500 4 B E -10 4 2 Fsin et al. 1773 K (1974) L w “‘»;::JI
"]: © Erdélyi et al. 1870 K (1977) 1500 + N + Komai ef al. (1095)
PARER IR 1 L 0o _'_HJT% o o
23 1200 o E - " 2 1200 4 TRy
A =T r o ] | T
= £ 3 s = _ = \[= == e
o 25 © - 000 - 1 o N
L =] a 1 Dayer o al. DTA(1980) m
9001 - ] a ] e | & Dayerrar EPaA 1930 1350 o &)
+ e .30 4 157080 o L I & Iheda er al. {1990) | o]y
= N m—]  Beaby . 41958)
Iz e any Al st | ‘ L
= X Ilomca st al, {1975) =
600 z L & 354 4% r 5 T Kl (1959 | =
g g X L X Retiewit ot o, (1990) 3 1
I 3 = 40 288 K 300 - : 1300 r ' Y
= % E T u} r & 0z 0.4 06 DR 1.0 & 0.20 022 024 026 028 0.30
= Ni x(Geh Ge x(Ge)
300 -45
‘ h ‘ / ‘ y ] i 5. (a) Caleulated phase diagram of the Ge-Ni binary system compared with experimental data. (b) Ni-tich part of the phase diagram compared with experimental data,
@ 0 0.2 04 0.6 0.8 1.0 é 0.2 0.4 0.6 0.8 1.0
Ni x(Ge) Ge Ni x(Ge) Ge
Fig. 4. Calculated phase diagram of the Ge-Ni binary system from the present  Fig.6. Caleulated enthalpy of mixing of liquid alloys compared with experimental
worl data. (Ref states: liquid Ge and liquid Ni).
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Thermodynamic modeling cPrL

Example: assessment of the binary Ge-Ni system

B Work flow for thermodynamic assessment
m  Comparison simulation vs experimental data

. ; ! L 2 i i - -
20 : : L = 10 ' : i : 1.0 \ @ Ni, Erdelyi sl 1870 K {1977} r < Erdélyi et al. IETO K {1977)
B £ o Endiélyi eral. 1870 K (1577 \ = G Exdelyi et al. 1870 K (1977) s = » Sudivisova o o, 1570 K {2007
= 0 = <l 1 Sudavesava eral. 1H70K (2007) L X die, Berennskyi e af, 1623 K (1977) 7 E 4 & Batalin el 1773 K (1955 I
£ = ' 4 Bualin et al, 1773 K [1983) & h N Kant 17001800 K (1966) B 5
3' =20 ED '\_l.'\ Cie, Kot | TR0 5000 B [ ] s} ),’ 5 -2 |
2o R \ z ) =
£ 0+ = \ = 0.6 \ Vi R-1 4
B — Z2 -3
E a0 S -4 Z ﬁ\ i =-§
o A, e ;
- @ < T 4 B 6
R0 nd \ L b B
B g 10 0.4 \ ik 3]
o / 5
= -100 w \_. s/ g
= fo = \ =/ - -8 -
i I N, Sudavisova e al. TEO0 K (2007} = -15 ) &
= -2+ & Ni, Esinet al. 177K (1974) - o nz2 e A 2
8 @ % Wi, Castaner 1274 K (1984) % o0 3 g 1o
£ 140 = [ Cie, Swladsova er af. 800K {2007y [ g B +
& Ge, Esin et al. 1773 K {1974) & - — &
& -
-160 . . : T - 25 . : : B = ot BT 2 od o5 08 1w
0 0.2 0.4 06 08 1.0 & 0 02 04 06 08 10 y 0 0.2 0.4 s 0.8 10 ﬁ N : ot 3 Iy
. &. - i e
Mi x(Ge) Ge Ni x(Gie) Ge x(Ge) x(Ge)
Fig. 10 Cabulated cxoess entmpy of mixing of biquid adloys compared with
Fig- 7. Caculed pamidl engalpy of Wi and Ge in lguid alloys 3t 120K g e cajculied svcess Gibts energy of mixing of liquid alioys comparsd witl Fig & Cabulated activity of Geand Mi in the Ce-Mi medtat 1570 compared with : .
compared with expedmensl daa (Rel stazes: liguid Ge and liquid NI o erim ental dam. (Ref. smtes: liquid Ce and 8guid M1} expenimental dan_ (Ref. sates: bquid Ge and liqud N1 expenmental da. (Ref. sates: Nguid (- and Nguid NI
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Thermodynamic databases
Steel and Fe-alloys

TCFE11 Elements, Systems, Phases and Properties

Included Elements

There are 29 elements included in the most recent version of the database.

Ar Al B C Ca Ce Co Cr Cu Fe
H Mg Mn Mo N Nb Ni [e] P Ru
S Si Ta Ti v w Y Zn Ir

The most recent version of the database contains the following:

e 345 assessed binary systems
e 290 assessed ternary systems
e 79 assessed quaternary systems

e Several assessed quinary systems

=P

—

L
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Non-equilibrium transformations CPEL

m Thermodynamic simulation software tools allow calculating phase equilibria in multi-
component systems as well as equilibrium thermodynamic properties, i.e. complete diffusion
in the liquid and solid states are assumed

; ° X5CrNiMo18-12-3, influence of Ni
Fe-Ni-Cr/800°C )
—_— Lioup
70 LIQUD+BCC_A2 e —
BCC_A2+ SIGMA_DB3
Bec_Az+Fec At BCC_A2+FCC_AT
SIGMA_DEE + FCC_AT - - _—
1
g
0
H
3 10
2
£
e
FCC_A14M23C6_Dad
700
0 S 600 \\’\,,
B o 20 80 40 50 60 o 80 90 100 BCC_A2 (7)*C14,LA\/ES(’7)*FCC,A1*MQGCS,DBAcS\GMA,DBBF’ii;K
Mass percent Cr

8 9 0 n 2 3
/ \§ Mass percent Ni
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Non-equilibrium transformations CPEL

m Thermodynamic simulation software tools allow calculating phase equilibria in multi-
component systems as well as equilibrium thermodynamic properties, i.e. complete diffusion
in the liquid and solid states are assumed

B Metals processing includes many non-equilibrium steps
casting & soldification

Solutionizing/homogenization heat treatments
Quenching and precipitation hardening

Joining (soldering/brazing, diffusion bonding)

B During service of high-performance alloys, diffusion-controlled processes can take place
B Grain coarsening
® Precipitate growth
®  Formation of intermetallic compounds at interfaces

B How can these non-equilibrium and time-dependent processes be modeled and simulated?
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The equilibrium solidification model CPEL

®  Under equilibrium conditions, the solidification path in an alloy
is given by the lever rule

B The equilibrium solute concentrations are TC
| COSCLSCO/k<XE CO'
kC,
A=A,
CSF_ Co
Co/k
T,+AT

KC, Co  Cuax Co/k ¢ C

solute
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The Scheil-Gulliver solidification model “PEL

B Inreality, solidification typically occurs under non-equilibrium conditions, i.e. the
cooling rate is too high to allow time for complete redistribution of alloying
elements according to equilibrium

B A qualitative description of the solute redistribution during solidification processes
is possible with the so-called “Scheil-Gulliver” model, which was first formulated
in 1913 by Gulliver.

B The basic assumptions of the model are:
m Diffusion of all elements in the liquid phase is infinitely fast
m Diffusion of all elements in the solid phases is zero
®m  The liquid/solid interface is in thermodynamic equilibrium
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The Scheil-Gulliver solidification model “PEL

B The corresponding differential equation for the mass balance
between solid and liquid was presented by Scheil in 1942:

(C, — Cs)dfs = (fL)dC,

where C is the local composition of the solid, C, of the liquid, f is the
fraction of solid and f; is the fraction of liquid

®m  With the partioning coefficient £ = C,/C, and considering that
mass is conserved (f; + f; = 1), the mass balance may be
rewritten as

CL(l _ k)dﬁg — (1 _ f_;‘)dCL Solid S/L Liquid > X,

m  Using the boundary condition C;, = Cyat f; =0

fs c

f df, 1 f dc,

1-f, 1-kJ ¢

0 Co

B Integrating results in the Scheil-Gulliver equation for
composition of the liquid/solid during solidification gives
C, = Co(f)f % Cs = kCo(1 = fo)*!
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The Scheil-Gulliver solidification model “PEL

B Because of complete diffusion in the liquid, the liquid composition is
always uniform, although this uniform composition changes as
solidification continues

B The composition of the solid varies continuously as the solidification
front advances and the solid retains this compositional variation
after the front has passed

B The composition of the solid deviates from the equilibrium

composition

m Solidification continues down to the eutectic temperature; when TE
is reached, the remaining liquid will have the eutectic composition,
and it solidifies to form a eutectic solid.
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The Scheil-Gull
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The Scheil-Gulliver module =

A File Tools Window Help Thermo-Calc 2021b — X
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The Scheil-Gulliver solidification model
Solidification of 1.4404/X3CrNiMo 17-12-2
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Modified Scheil-Gulliver models
S-G with fast diffusers

Interstitial elements in steel like C, N or O have high diffusion rates

The assumption of no diffusion in the solid phase during
solidification is thus not correct at most industrial solidification

rates.
B Scheil with fast diffusers is a variant of the classic Scheil
simulation that was developed mainly for steel applications

B The assumptions are
m Diffusion of all elements in the liquid phase is infinitely fast
m Diffusion of all elements in the solid phases except the ones defined
as “fast diffusers” is zero
m Diffusion of the elements defined as “fast diffusers” is infinitely fast in
the solid phase
m The liquid/solid interface is in thermodynamic equilibrium

=PrL
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Modified Scheil-Gulliver models
S-G with fast diffusers
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Modified Scheil-Gulliver models
Solidification of Fe-1.4Mn-0.8Si-0.4C
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Modified Scheil-Gulliver models
S-G with back-diffusion in primary phase

B This model uses diffusion data from a mobility database to calculate
back diffusion in the primary phase

B As with the Scheil-Gulliver model, this model assumes infinitely fast
diffusion in the liquid material, but it allows for limited diffusion in the
primary phase of the solid material.

B The assumptions are
m Diffusion of all elements in the liquid phase is infinitely fast

m Diffusion of all elements in the primary solid phase is quantitatively
calculated using mobility data, a cooling rate, and a domain size (typically
this will be the secondary arm spacing)

®m The liquid/solid interface is in thermodynamic equilibrium
B Using diffusion data from a mobility database, it quantitatively takes
into account the real back diffusion of all elements in the primary solid
phase (typically the FCC or BCC phase)

=PrL
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Modified Scheil-Gulliver models CPEL
S-G with back-diffusion in primary phase
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Modified Scheil-Gulliver models
S-G with back-diffusion in primary phase

A File Tools Window Help
06 B8
New Open Save ' Switch to Console Mode

Project & & x| Configuration
@ Start temperature: 25000
My Pfoject
Temperature step: 10

System Definer 1 Temperature unit: Celsiis

Composition unit Mass percent v

1

®
Cooling rate: 1000
Plot Renderer | =AREE

Secondary dendrite arm spacing: | Calculated v

Primary phase: Automatic

Composition e 595

Composition Cr

c

Thermo-Calc 2021b

[ Scheil Calculator 1

+ Show advanced options

Classic Scheil (®) Scheil with back diffusion in primary phase () Scheil with solute trapping

K/s

50E-5 n | 033 SE m

Fast diffuser

Fast diffuser

Composition Ni 120 Fast diffuser
Composition Mo 20 Fast diffuser
Composition C 005 /] Fast diffuser

Scheduler 58 x
Scheduled Jobs

@ Help =) ! Perform Tree|  Create New Successor =| =

B

X

Results

Plot Renderer 1

Advanced Metallurgy — 2024/25

Thermodynamic and kinetic modeling and simulation

47



Modified Scheil-Gulliver models
Solidification of 1.4404/X3CrNiMo 17-12-2
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Multicomponent diffusion theory CPEL

m  Fick’s 1t and 2" law describe the flux of a species k in a concentration gradient (1) and the

solute balance as a function of time (2), respectively
ack ack aZCBk
Jie =D 7> (1) and o =Pz (2)
® If an alloy contains 2 or more species, the diffusivities D, not only depend on the
concentration but also on the concentration gradient
B A multicomponent extension to Fick’s 1st law was first expressed by Onsager in 1931,
postulating that each flux is linearly related to every thermodynamic force

SN
__E r O
Jk = . Ly; ox
1=1

where the pu; terms are the chemical potentials for the various species, which are unique functions of the
composition (4; = f(cy, ¢z, €3,-,¢,) and Ly; is the proportionality factor, which depends on the mobility of the

individual species

m  The flux J, is defined such as 2.} _; Vi.Jx = O (v partial molar volume of k)
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Multicomponent diffusion theory CPEL

B Generally, it is convenient to express the fluxes as functions of gradients in concentration
rather than gradients in chemical potential

z z ou; ac]
ket dcj 0x

m With Dy; = — Lkl ac, (unreduced diffusivities)
< aC]
Jk = —Zija
]:

= The v i yalues are the so-called thermodynamic factors
J

- the diffusivities consist of a thermodynamic and a kinetic part
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Kinetic modeling CPEL

B Atomic mobilities are purely kinetic, element specific properties, defined as the velocity of a

: : .. m?/s
species per unit force (unit: ]/mol)
B The mobility coefficient for an element B in metallic matrix can be written as
Mg (—Qs
Mp = —ex
B =R P\ RT

where MBQ is the compositional-dependent frequency factor and Qp the activation enthalpy
B The composition-dependency can be represented as a linear combination of the values at
each endpoint of the composition space and a Redlich-Kister term

m
qDB = Z leng + Eixix]' Z rA;](xl — X])T]

i i j>i =0
& represents [InMJ or Qg
(Dg is the value of @ for pure i and thus represents one of the endpoints in the composition space
TAfg are binary interaction parameters, the commas separating different species interacting with each other
x; and x; are mole fractions for elements i and j, respectively

B Asinthe case of thermodynamic data, the model parameters CD}'B,’”A%,... are determined by
an optimization procedure (considering experimental data)
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Kinetic modeling CPEL

B The multi-component diffusion theory has been implemented in DICTRA (now TC diffusion
module)

B The mobilities are stored in the mobility databases

B The reason to store individual mobilities rather than interdiffusion coefficients is that in an n-
component system, there are n mobilities and (n-1)? interdiffusion coefficients

B The mobilities are related to the interdiffusion coefficients according to

n
Ly; = Z(‘Sik — ¢, Vi) CiypaM;
=1

Oix is the Kronecker delta, i.e. §;; = 1 when j=k and §;; = 0 otherwise

¢ and c; are the amounts of k and i per unit volume

V; is the partial molar volume of element i

Yva 1S the fraction of vacant lattice sites on the sublattice where i is dissolved

M; is the mobility of i when i is interstitial and the mobility divided by y,,, when i is substitutionally dissolved
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Kinetic modeling withe Thermo-Calc
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The diffusion simulation module CPEL
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The diffusion simulation module o=
Example: Brazing of diamond (C) to steel

Computational Materials Science 78 (2013) 74-82

Contents lists available at SciVerse ScienceDirect '!, B
“ge
Computational Materials Science =
journal homepage: www.elsevier.com/locate/commatsci —

Modeling and simulation of the TiC reaction layer growth during active @Cmsmrk
brazing of diamond using DICTRA

W.. Zhu ab J. Wang *¢, L.B. Liu bd HS. Liu™d Z.Pp. Jin bd . Leinenbach®*

2Empa-Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Jeining Technologies and Corrosion, Uberlandstrasse 129, CH-8600 Diibendorf, Switzerland
b School of Materials Science and Engineering Central South University, Changsha, Hunan 410083, PR China

©School of Materials Science and Engineering Guilin University of Electronic Technology, Guilin, Guangxi 541004, PR China

9 Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

Advanced Metallurgy — 2024/25 Thermodynamic and kinetic modeling and simulation
55

55



The diffusion simulation module CPEL

Example: Brazing of diamond (C) to steel

Vacuum brazing 930 2C /10 min

Filler: Cu-14.45n-10.2Ti-1.5Zr (mass %)

Base material: X2Cr Ni Mo 18 14 3 stainless steel (AISI 316)
Thickness of brazing layer: ~50 um

TiC

(Cu,Sn)

(Cu,Sn),(Ti,Zr)

Brazing alloy

(Fe,Cr),Ti
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The diffusion simulation module CPEL
Example: Brazing of diamond (C) to steel

i
Thermodynamics

Gmix — GO szeal Gexcess

mix mix

Kinetics/Diffusion

LI oc
J, =—;D,g.v-c,. a—t’fz—v-Jk

Diffusion
equation

ZxGO+RTZx Inx; +22xx§2 n Pl .l
)ﬂL’C lLll llll
e 1 ZZ(Sik_xk)xiMi( -=)
i=1 j ox,
¢ _o0 ¢ 160¢ 10¢
af;="af, + 108, (x ) + () (x — %), y zexp(M)
? RT
“Qf =A+BT+CTInT
Sn 800°C/720 s (ﬁ) RT
Thermodygamic factor AG = D,
= Zx (O "‘ZZX,X{Z "0 (x, —x,)’}
CN i j>i
Liquid (Cu-Sn-Ti)
ub e CusTiz ) Cots -
Cu 0 02 “M04i g 06 08 E ”'10T1
Mole fraction, Ti — P
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The diffusion simulation module CPEL
Example: Brazing of diamond (C) to steel

m Simulated influence of amount of Ti

m  Simulated influence of alloy on TiC growth in brazing diamond at
iti i 930°C
composition + experimental results
350 400 -
B Klotzetal. Cu-14.48n-10.2Ti-1.5Zr | Cu-15Sn-2Ti (wt.%) N
1 O Calculation for Cu-14.4Sn-10.2T4-1.52c [ f---- Cu-15Sn-5Ti (wt.%) P
300 4 A Klotzetal. Cu-15Sn-5Ti T 35049, .. Cu-15Sn-10Ti (wt.%) -7 ]
| é Caleulation for Cu 135053 1=-= Cu-15Sn-15Ti (wt.%) =" -7
otz et al. Cu-20Sn-15Ti 300 4= = =« Cy- N i y ’ -
250 4 v Calculation for Cu-20Sn-15Ti [ ”é\ Cu-158n-20Ti (wt. A)), .7 P -
*é\ @ Klotzet al. Cu-25Sn-15Ti g 1 L, - .-
= 1 < Calculation for Cu-25Sn-15Ti E © 250 AE o .
) Q L - z -
O 200 = IR oc T
S g 8 200 4 RV
S % PR
% 150 1 o 1 .7 .
;:) ] f) 150 ‘s,
_g 4
Q
100 — L
ﬁ 100
50 50
o+ 1 —
880 900 920 940 960 980 0 400 800 1200 1600 2000 2400 2800 3200 3600
Temperature ("C) Time (s)

/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./
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The diffusion simulation module CPEL
Example: Brazing of diamond (C) to steel

m  Simulated influence of Ag-based m  TiN reaction layer growth during
filler alloy brazing of AIN ceramics
300 7000
O Ag-27.25Cu-12 5In-1.25Ti 740°C i e
1——Ag35Cu-1.75Ti 910°C ] e
250 4 - - - Ag-35Cu-1.75Ti 880°C 5000 -1 N
----- Ag-35Cu-1.75Ti 850°C 5500 - ‘
g » —-—- Ag-27.25Cu-1.25Ti 740°C ] ’é‘5000 = o
- . E 1 ; -
~ - =, ] - i = -
> - 4500 4 1 o
5 - & 1 .
= . ' E4000 L
© 150 H © 3500 |
A 2 4 sha o
2 . 23000 it i o
Mo -~ D i
- Q2500 ; o
= 100 -2 - e :
1 O Villers et al.
= = 2000 4 iillers et al SSUOC
1/ ] 1 O Viillers et al. 930°C
so Wrmim B m e T T T T il | A Villers etal. 980°C
1000 ~ ——GB diffusion 880°C
1 500 - --- GB diffusion 930°C
0 e e GB diffusion 980°C
L T T T T T T T T T T T T T T 0 L PR e ey R g e ) Tt T T
0 400 800 1200 1600 2000 2400 2800 3200 3600 0 400 800 1200 1600 2000 2400 2800 3200 3600
Time (s) Time (s)

/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./
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The diffusion simulation module “PFL
Other examples

Calculated C-concentration profiles after 100, Calculated volume fraction of cementite as a
1000, 5’000 and 18’000 s at 900°C in a function of time, during austenitization of an
carburizing atmosphere Fe-2.06 at.% Cr-3.91 at.% C alloy at 910°C
0.8 L L 1 2 L 0.15 1 1 1 ! 1
0.7- -

'y

0.10 L

Mass-percent C
o
H
1
Volume-Fraction of Cementite

0.05 L
0.34 »
0.2 -\ A
0.1 T T T T T 0 -2 L I0 A 62 '3 4
0 E-4 5 10 15 20 25 30 10 10 10 10 1 10 10
i Distance [meter] Time [s]

/A. Borgenstam et al., Journal of Phase Equilibria 21(3) (2000)
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Simulation of precipitation reactions =P-L

B Phase transformations start with the formation of stable nuclei of a size larger than the
critical radius grown at expenses of available elements in the matrix.

B The growth of the nucleus ends when the thermodynamic equilibrium is reached, i.e.
chemical potentials of each element are equal anywhere in the system.

B Assuming spherical nuclei, the nucleation rate can be described as

](t) — ]s exp (_ %) J¢: steady state nucleation rate

T: incubation time

Z: Zeldovich factor
AG* B*: rate at which atoms are attached to
critical nucleus
kT Ny: number of available nucleation sites
per unit volume
AG™: nucleation barrier

Js = ZB"Noexp (—

16mo3

AG* = ——
3AGHFP

o: interfacial energy
AGE™P: driving force for formation of
precipitates P from a matrix
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The precipitation module

A e Tools
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The precipitation module

xample: Carbide precipitation in Fe shape memory

alloy

cPrL

A Ele Toos Window Help

0o
New Open Save  Switch to Console Mode

Therm

Calc 20216 - One-step 600 660.1cu

Project @ 3 x | | Configuration
i se0c
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Learning objectives CPEL

> Thermodynamic and kinetic modeling
> Understand the key concepts of thermodynamic modeling, including solution phases and the
mathematical description of phase properties.
> Differentiate between ideal, regular, and real solution models and their respective assumptions.
> Redlich-Kister formalism for mathematical description of interactions
> Understanding the concepts of advanced solution models: (sub)n-regular solution model; sub-lattice
model; quasi-chemical model

> Understanding the concepts of equilibrium and non-equilibrium solidification models:
> Lever rule for equilibrium solidification
> Scheil-Gulliver solidification for rapid cooling scenarios
> Advanced variations of Scheil-Gulliver models (with fast diffusers, e.g., interstitial elements; with back-diffusion
in primary solid phases.

> Practical applcations

> Use Thermo-Calc to assess thermodynamic and kinetic behaviors in multicomponent systems.

> Casting and solidification, heat treatments (e.g., solutionizing, quenching, and precipitation hardening), joining
processes (e.g., brazing, soldering, and diffusion bonding), grain growth
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