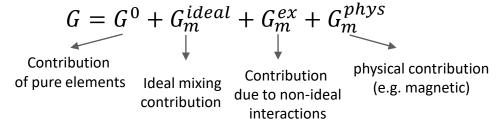


FS 2024/25

MSE-422 – Advanced Metallurgy 11-Thermodynamic and kinetic modeling and simulation

Christian Leinenbach

- The CALPHAD method is based on the thermodynamic modeling of solution phases and stoichiometric compounds
- For all solution phases, the Gibbs energy G must be determined



- Solution phase = solid solution (e.g. FCC, BCC, HCP....) or LIQUID
- Thermodynamic modeling implies the mathematical description of each phase, thereby considering the physical properties of the phase (e.g. lattice structure, Cp, etc.) as precisely as possible

Pure elements

The integral Gibbs energy of a pure element φ in the state i (neglecting p) is

$$G_i^{\varphi}(T) = H - TS$$

Considering the definitions of H and S this can be written as

$$G_i^{\varphi}(T) = H_m^{SER} + \int_0^T C_p dT - T \int_0^T \frac{C_p}{T} dT$$

with H_m^{SER} : enthalpy of the element/substance in its defined reference state at 298.15K and 1bar

In the case of elements, the functions recommended by Scientific Group Thermodata Europe (SGTE) are generally used for representing G_i^{φ} :

$${}^0G_i^{\varphi}(T)=G_i^{\varphi}(T)-H_m^{SER}=a+bT+cTln(T)+dT^2+eT^3+fT^{-1}+gT^7+hT^{-9}$$
 Where a, b, c are the model parameters

For ferromagnetic substances, a magnetical ordering term G^{arphi}_{mag} needs to be added:

$$G_{mag}^{\varphi}(T) = RTln(1+\beta)g(\tau)$$

where $\tau = T/T_C$, T_C is the critical temperature for magnetic transition, β is the magnetic moment in Bohr magneton and $g(\tau)$ is the magnetic ordering function

Stoichiometric compounds

The same approach can be extended to model the Gibbs energy function of a stoichiometric compound heta

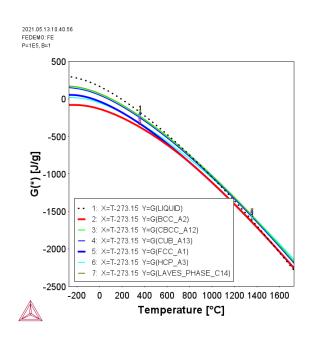
$$G_i^{\theta}(T) = \sum_i \nu_i H_i^{SER} + A + BT + CT \ln(T) + DT^2 + \cdots$$

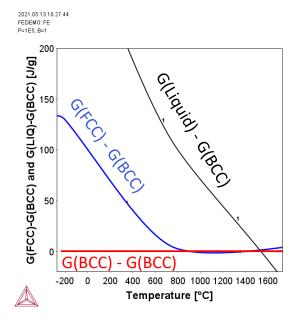
where A, B, C. . . are the model parameters and v_i are the stoichiometric coefficients for the elements that make up the compound

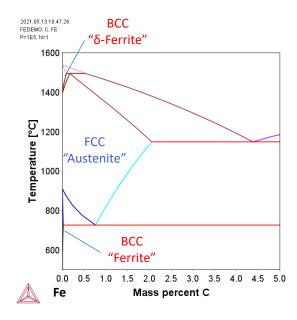
For compounds with zero C_p of formation or where C_p is not known, a simpler expression can be used

$$G_i^{\theta}(T) = \sum_i \nu_i G_i^{ref} + \Delta_f H^{\theta} - T \Delta_f S^{\theta} = \sum_i \nu_i G_i^{ref} + I + JT$$

Example: Gibbs energies of phases in pure iron





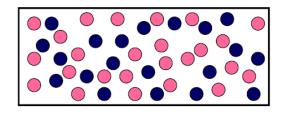


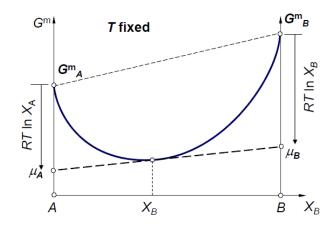
EPFL

Ideal solutions

- The simplest model for binary solutions is the ideal solution model
- It can readily be extended to solutions of higher order (more components)
- Its assumptions are that
 - the distribution of the atoms A and B is completely random
 - the exchange energy between atoms of type A and B is equal to the average exchange energy of A-A bonds and B-B bonds.

$$G_m^{\alpha} = \sum_i x_i G_i^0 + RT \sum_i x_i ln x_i$$





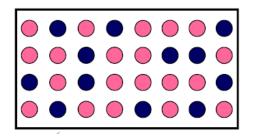
Regular solutions

- In regular solutions the exchange energy in A-B bonds is no longer equal to the average of the bond energies of A-A and B-B bonds.
- A mixing enthalpy $\Delta H_{mix} = \Omega X_A X_B$ needs to be added
- Ω is a (temperature dependent) parameter that describes the interaction between A and B atoms

$$\Omega = N_a z \left(\varepsilon_{AB} - \left(\frac{\varepsilon_{AA} + \varepsilon_{BB}}{2} \right) \right)$$
 N_a: Avogrado constant z: coordination number

$$G_m^{\alpha} = \sum_{i} x_i G_i^0 + RT \sum_{i} x_i ln x_i + \sum_{i} \sum_{j>i} x_i x_j \Omega_{ij}$$

■ Depending on the type of bonds, Ω <0 (A and B "like" each other) or Ω >0 (A and B "dislike" each other)

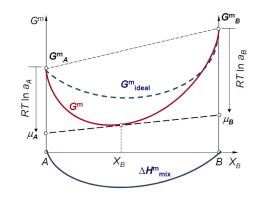


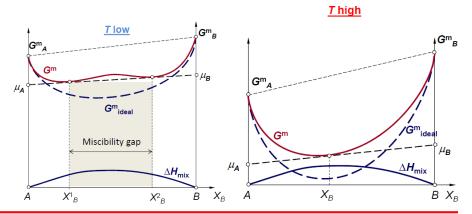
EPFL

Regular solutions

- Case Ω<0: A and B "like" each other</p>
 - G_m remains concave at any temperature and the enthalpy of mixing only reinforces the "attractiveness" of A and B atoms.

- Case Ω>0: A and B "dislike" each other
 - At high temperature, $-T\Delta S_m$ still dominates and G_m remains concave. At lower temperature, the enthalpy of mixing dominates and can lead to demixing (miscibility gap).





Real solutions

- Real solutions deviate to variable extent from ideal or regular solutions. The reason for this can be that
 - The exchange energy of A-B bonds is not independent of the composition (no unique Ω);
 - 2) The interaction between atoms of different type leads to a preferential arrangement of atoms A-B (instead of a random arrangement)
 - 3) Atoms can only take certain positions in a crystal or the liquid (e.g. for topological (size) or chemical reasons)
- These aspects are considered in
 - 1) The (sub)ⁿ-regular solution model (no physics, just numerical)
 - 2) The sub-lattice model
 - 3) The quasi-chemical approach

Real solutions – the (sub)ⁿ-regular solution model

- The enthalpy of mixing is not necessarily symmetric and higher order terms allow introducing some degree of skewedness to the enthalpy of mixing curve
- The Gibbs free energy is give as

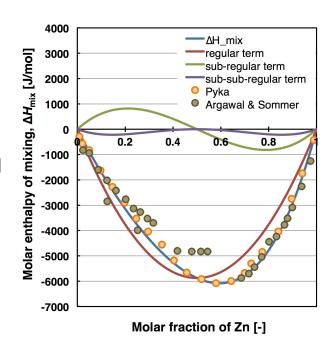
$$G_m^{\alpha} = \sum_{i} x_i G_i^0 + RT \sum_{i} x_i ln x_i + \sum_{i} \sum_{j>i} x_i x_j \sum_{k} L_{ij}^{k} (x_i - x_j)^{k}$$

Where L_{ij}^k is a binary interaction parameter dependent on the value of k; L_{ij}^k = A_k+B_kT+C_kTlnT+...

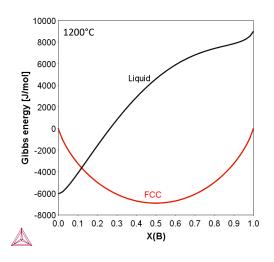
- This numerical approach, which facilitates the calculation of phase diagrams, is the Redlich-Kister formalism
- Examples for binary alloys of A and B
 - Regular solution: $L_{AB}^0 \neq 0$, L_{AB}^k $(k \ge 1) = 0$
 - Sub-regular solution: L_{AB}^0 , $L_{AB}^1 \neq 0$, L_{AB}^k $(k \geq 2) = 0$
 - Sub-sub-regular solution: L_{AB}^0 , L_{AB}^1 , $L_{AB}^2 \neq 0$, L_{AB}^k $(k \geq 3) = 0$
- In some cases higher order interaction might not be neglected and a ternary interaction parameter is introduced: $G_{ABC}^{ex} = x_A x_B x_C L_{ABC}^k$

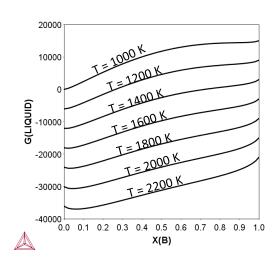
Real solutions – the (sub)ⁿ-regular solution model

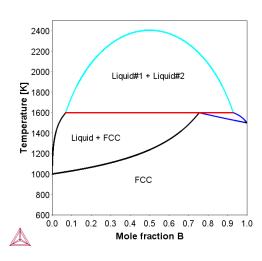
- The sub-regular solution model is used for substitutional phases such as liquid, bcc, fcc, etc.
- It cannot be used for interstitial solutions, ordered intermetallics or ceramic compounds
- There is little evidence for the need of interaction parameters of any higher order than 2
- Prediction of thermodynamic properties of substitutional phases is based on binary and ternary terms
- Example: enthalpy of mixing of liquid Mg-Zn
 - experimental data from calorimetry measurements
 - Data fitting leads to $L_{Mg-Zn,liq}^{0} = -23500 \text{ kJ/mol}$ $L_{Mg-Zn,liq}^{1} = 8500 \text{ kJ/mol}$ $L_{Mg-Zn,liq}^{2} = -3500 \text{ kJ/mol}$



Example: influence of interaction parameters on phase stabilities

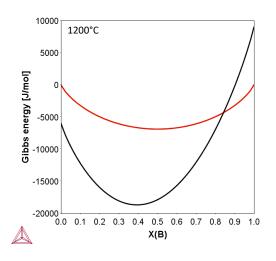


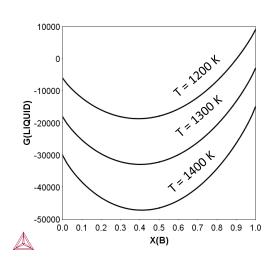


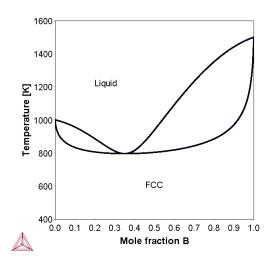


$$G_m^{ex,liquid} = x_A x_B^{0} L_{A,B} = x_A x_B \cdot (+40000) \rightarrow \text{negative excess term}$$

Example: influence of interaction parameters on phase stabilities





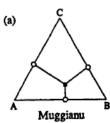


$$G_m^{ex,liquid} = x_A x_B^{0} L_{A,B} = x_A x_B \cdot (-50000) \rightarrow \text{negative excess term}$$

Real solutions – extrapolation to higher order systems

- Extrapolation of thermodynamic properties of alloys into multi-component systems is based on the summation of the binary and ternary excess parameters
- The formulae for doing this are based on various geometrical weightings of the mole fractions
- Muggianu's model:

$$\begin{split} G^{ex}_{mix,ABC} &= x_A x_B \{ L^0_{AB} + L^1_{AB} (x_A - x_B) \} \\ &+ x_B x_C \{ L^0_{BC} + L^1_{BC} (x_B - x_C) \} \\ &+ x_A x_C \{ L^0_{AC} + L^1_{AC} (x_A - x_C) \} \end{split}$$



Kohler's model:

$$G_{mix,ABC}^{ex} = (x_A - x_B)^2 \frac{x_A}{x_A + x_B} \cdot \frac{x_B}{x_A + x_B} \left\{ L_{AB}^0 + L_{AB}^1 \left(\frac{x_A - x_B}{x_A + x_B} \right) \right\}$$

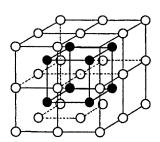
$$+ (x_B - x_C)^2 \frac{x_B}{x_B + x_C} \cdot \frac{x_C}{x_B + x_C} \left\{ L_{BC}^0 + L_{BC}^1 \left(\frac{x_B - x_C}{x_B + x_C} \right) \right\}$$

$$+ (x_A - x_C)^2 \frac{x_A}{x_A + x_C} \cdot \frac{x_C}{x_A + x_C} \left\{ L_{AC}^0 + L_{AC}^1 \left(\frac{x_A - x_C}{x_A + x_C} \right) \right\}$$

EPFL

Real solutions – the sublattice model

- A sublattice (SL) phase is conceptualized as a combination of interlocking sublattices where various components can mix
- The model is phenomenological, focusing on macroscopic behavior, and does not inherently define any specific crystal structure (but can)



Consider a phase with N distinct lattice sites, each forming a SL; the fractional site occupation of components on the different sublattices are:

$$y_i^s = \frac{n_i^s}{N^s}$$
 or including vacancies $y_i^s = \frac{n_i^s}{n_{Va}^s + \sum_i n_i^s}$

Where n_i^s number of atoms of component i on sublattice s; N^s total number of sites on the sublattice

Mole fractions are related to site fractions according to

$$x_i = \frac{\sum_{s} N^s y_i^s}{\sum_{s} N^s (1 - y_{Va}^s)}$$

The ideal entropy of mixing is made up of the configurational contributions from mixing on each SL

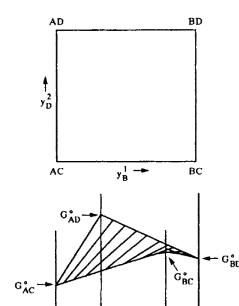
$$G_m^{id} = -TS_m^{id} = RT \sum_{s} N^s \sum_{i} y_i^s ln y_i^s$$

EPFL

Real solutions – the sublattice model

- Lattice occupation:
 - Consider a sublattice phase consisting of the elements A, B, C, and D
 - A and B share the same sublattice and C and D are confined to another sublattice: (A,B)₁(C,D)₁
- End members
 - Four "complete occupation" configurations exist, representing pure combinations: pure A or B on SL1 and either pure C or D on SL2
 - These four configurations are referred to as "end members" and define the reference Gibbs energy surface.
- The Gibbs energy of the phase is a combination of the end members, calculated as:

$$G_m^{ref} = y_A y_C G_{AC}^0 + y_B y_C G_{BC}^0 + y_A y_D G_{AD}^0 + y_B y_D G_{BD}^0$$



Real solutions – the sublattice model

- Consider again the two-SL system (A,B)₁(C,D)₁
- The interactions A-C, A-D, B-C, B-D are controlled by the Gibbs energies of the compounds AC, AD, BC and BD
- Mixing on the SLs controls A-B and C-D interactions and

$$G_{mix}^{ex} = y_A^1 y_B^1 L_{A,B:*}^0 + y_C^1 y_D^1 L_{*:C,D}^0$$

 A sub-regular model can be introduced by making the interactions compositionally dependent on the site occupation in the other SL

$$G_{mix}^{ex} = y_A^1 y_B^1 y_C^2 L_{A,B:C}^0 + y_A^1 y_B^1 y_D^2 L_{A,B:D}^0 + y_C^1 y_D^1 y_A^2 L_{A:C,D}^0 + y_C^1 y_D^1 y_B^2 L_{B:C,D}^0$$

It is possible to add some site fraction dependence to these parameters

e.g.
$$L_{A,B:C}^0 = y_A^1 y_B^1 y_C^2 \sum_{\nu} L_{A,B:C}^{\nu} (y_A^1 - y_B^1)^{\nu}$$

Applications of the sublattice model

- The sublattice model is one of the most predominant methods used to describe solution and compound phases, e.g. for
 - Line compounds in ternary systems
 - e.g. Laves phase $Fe_2TiSi (Fe)_2(Ti)_1(Si)_1$
 - Interstitial phases,
 - e.g. carbides (Fe,Cr,Ni,...)_n(C,Va)_m
 - Complex intermetallic compounds with significant variation in stoichiometry,
 - \bullet e,g. Fe₃Al (Fe)₃(Al,Va)₁
 - Order-disorder transformations
 - e.g. Cu₃Au disordered phase (Cu,Au)₁; ordered phase (Cu)₃(Au)₁

Real solutions – the quasi-chemical approach

- The regular solution model assumes a random distribution of atoms even though the enthalpy of mixing is not zero
- In reality, a random solution is only expected at very high temperatures when the entropy term overwhelms any tendency for ordering or clustering of atoms; the atom arrangement is no longer random and the entropy of mixing, $\Delta^{\text{mix}S}$, may differ from the ideal value
- The quasi-chemical approach takes into account that the interactions between atoms A and B are more or less energetic, which leads to preferential formation of A-B bonds (Ω <0) or A-A and B-B bonds (Ω >0)
- The model is so—called because it has a mass—action equation which is typical in chemical reaction theory

Real solutions – the quasi-chemical approach

- Consider a binary system A-B of N atoms with the concentration x_A and x_B
- To understand the principle, the situation where the atoms are arranged on a 1-dimensional lattice is considered ("Ising"-model)

- The total number of bonds emanating from an atom of type A are x_ANz , with Z the coordination number of an atom (Z=2 in the 1D case)
- Of all the bonds emanating from an atom of type A, bonds of type A-B and of type B-A have to be subtracted (the A-B bonds are not interchangeable with the B-A bonds)
 - Number of A-A bonds: $N_{AA} = \frac{1}{2}(x_A ZN N_{AB} N_{BA})$
 - Number of B-B bonds: $N_{BB} = \frac{1}{2}(x_B Z N N_{AB} N_{BA})$

The quasi-chemical approach – enthalpy term

- The total number of heterogeneous bonds, N_{het} , is $N_{het} = N_{AB} + N_{BA}$ and the number of A-B bonds is equal to the number of B-A bonds: $N_{AB} = N_{BA}$; The total number of bonds is NZ/2
- \blacksquare The concentration of bonds, n_{ik} , of the different types is:

$$n_{AB} = \frac{N_{AB}}{\frac{NZ}{2}}$$

$$n_{BA} = \frac{N_{AB}}{\frac{NZ}{2}}$$

$$n_{BA} = \frac{N_{AB}}{\frac{NZ}{2}}$$

$$n_{BB} = \frac{N_{BB}}{\frac{NZ}{2}}$$

$$n_{BB} = \frac{N_{BB}}{\frac{NZ}{2}} = \left(x_{A} - \frac{1}{2}\frac{N_{AB}}{\frac{NZ}{2}} - \frac{1}{2}\frac{N_{BA}}{\frac{NZ}{2}}\right) = \left(x_{A} - \frac{1}{2}n_{AB} - \frac{1}{2}n_{BA}\right) = \left(x_{A} - \frac{n_{het}}{2}\right)$$

These bonds contribute to the Gibbs free energy with γ_{AA} , γ_{BB} , and γ_{AB} (energy from the bonds) for A-A, B-B, and A-B as well as B-A bonds, respectively. The total Gibbs free energy, G, is then

$$G(N) = \frac{NZ}{2} \left(n_{AA} \gamma_{AA} + n_{het} \gamma_{AB} + n_{BB} \gamma_{BB} \right) - TS_c = \frac{NZ}{2} \left(\left(x_A - \frac{n_{het}}{2} \right) \gamma_{AA} + n_{het} \gamma_{AB} + \left(x_B - \frac{n_{het}}{2} \right) \gamma_{BB} \right) - TS_c$$

$$G(N) = \underbrace{\frac{NZ}{2} \left(x_A \gamma_{AA} + x_B \gamma_{BB} \right)}_{X_A G_A} + \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AA} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AA} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AA} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AA} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{BB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{BB}}{2} \right) \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{BB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac{\gamma_{AB} + \gamma_{AB}}{2} \right) \right) - TS_c}_{\Delta \text{ mix}} - \underbrace{\frac{NZ}{2} \left(n_{het} \left(\gamma_{AB} - \left(\frac$$

The quasi-chemical approach – entropy term

- Assume that there is no contribution to entropy by e.g. change in lattice vibrations due to the A-B bonds $\left(\gamma_{AB} \frac{\gamma_{AA} + \gamma_{BB}}{2}\right) = \left(\varepsilon_{AB} \frac{\varepsilon_{AA} + \varepsilon_{BB}}{2}\right) = \omega$
- The total configurational entropy of the system of bonds, $S_{c,bonds}$, can be calculated as

$$S_{c,bonds} = K_B \ln W; \qquad W = \frac{\frac{NZ}{2}!}{N_{AA}!N_{BB}!\frac{1}{2}N_{AB}!\frac{1}{2}N_{AB}!} = \frac{\frac{NZ}{2}!}{\left(n_{AA}\frac{NZ}{2}\right)!\left(n_{BB}\frac{NZ}{2}\right)!\left(n_{AB}\frac{NZ}{2}\right)!\left(n_{BA}\frac{NZ}{2}\right)!}$$

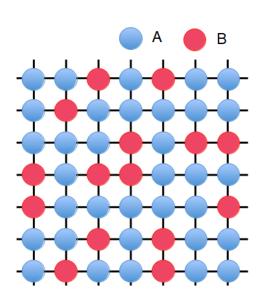
With Sterling's formula, i.e. ln(x!) = x ln(x), this can be written as:

$$\begin{split} S_{\text{c,bonds}} &= k_{B} \left[\left(\frac{NZ}{2} \right) \ln \left(\frac{NZ}{2} \right) - \left(n_{\text{AA}} \frac{NZ}{2} \right) \ln \left(n_{\text{AA}} \frac{NZ}{2} \right) - \left(n_{\text{BB}} \frac{NZ}{2} \right) \ln \left(n_{\text{BB}} \frac{NZ}{2} \right) - \left(n_{\text{AB}} \frac{NZ}{2} \right) \ln \left(n_{\text{AB}} \frac{NZ}{2} \right) - \left(n_{\text{BA}} \frac{NZ}{2} \right) - \left(n_{\text{BA$$

EPFL

The quasi-chemical approach

- In calculating the configurational entropy of the bond system, it was considered that A-B bonds, A-A bonds, B-B bonds, and B-A bonds are permutable amongst themselves
- However, A-B bonds are different from B-A bonds (not in their energy but with regard to permutability)
- It was assumed that the bonds can be placed randomly on the lattice of bonds, but there are already some restrictions on the Ising chain model
 - e.g. an A-A bond cannot be next to a B-B bond, neither can an A-B bond be to the left of a A-A bond (but a A-A bond or a B-A bond can).
- The arrangement of the bonds is hence somehow restricted (→
 2D model)
- Accounting for this in a 3D network of bonds in a detailed way becomes awfully complicated



The quasi-chemical approach

- The entropy cannot be larger than in a fully random arrangement of the atoms.
- For 1 mole (i.e. N = Na) of a binary mixture of atoms, the maximum configurational entropy is attained when xA = xB = 0.5 and Sc, atoms = RZIn(2)
- If we do the same calculation for the bonds, again for 1 mole of atoms, the maximum is obtained when nAA = nBB = nAB = nBA = 0.25, and its value is Sc,bonds = RZIn(4)/2
- It cannot be that the configurational entropy changes just because we looked at another entity, i.e. bonds rather than atoms
- the entropy calculated for the bonds can be normalized with regard the one obtained for the atoms by looking at their respective maximum value and assuming that also outside the maximum with the normalization factor Φ

$$\Phi = \frac{S_{c,atoms}}{S_{c,bonds}} = \frac{2ln(2)}{Zln(4)} = \frac{1}{Z}$$

 The molar Gibbs free energy of mixing Gmix, as a function of the bond concentration of heterogenous bonds

The quasi-chemical approach

 The molar Gibbs free energy of mixing G_{mix}, as a function of the bond concentration of heterogenous bonds becomes

$$\Delta^{\text{mix}} g = \frac{N_{\text{a}} Z}{2} n_{\text{het}} \omega + T \frac{N_{\text{a}} Z}{2} \Phi k_{\text{B}} \left[\underbrace{\left(x_{\text{A}} - \frac{n_{\text{het}}}{2} \right) \ln \left(x_{\text{A}} - \frac{n_{\text{het}}}{2} \right)}_{n_{\text{AA}}} + \underbrace{\left(x_{\text{B}} - \frac{n_{\text{het}}}{2} \right) \ln \left(x_{\text{B}} - \frac{n_{\text{het}}}{2} \right)}_{n_{\text{BB}}} + \underbrace{\frac{n_{\text{het}}}{2} \ln \left(\frac{n_{\text{het}}}{2} \right)}_{n_{\text{AB}}} + \underbrace{\frac{n_{\text{het}}}{2} \ln \left(\frac{n_{\text{het}}}{2} \right)}_{n_{\text{BA}}} + \underbrace{\frac{n_{\text{het}}}{2} \ln$$

- The equilibrium value for the bond concentration n_{het} is found when G_{mix} is minimum
- Setting the 1st derivative 0, rearranging and considering $\Phi=1/Z$

$$TR\left[ln\left(x_{A}-\frac{n_{het}}{2}\right)+ln\left(x_{B}-\frac{n_{het}}{2}\right)-2ln\left(\frac{n_{het}}{2}\right)\right]=2N_{A}Z\omega$$
 with $N_{A}Z\omega=\Omega$: $exp\left(\frac{2\Omega}{RT}\right)=\frac{\left(x_{A}-\frac{n_{het}}{2}\right)\left(x_{B}-\frac{n_{het}}{2}\right)}{2\left(\frac{n_{het}}{2}\right)}=\frac{[n_{AA}][n_{BB}]}{[n_{AB}][n_{BA}]}$

Looks like mass-action:

Applications of the quasi-chemical approach

 The quasi-chemical approach is particularly effective in modeling non-ideal systems where interactions between components lead to significant short-range ordering, clustering, or other non-random atomic arrangements.

- Description of short-range order in Cu-Zn or Ni-Cr alloys
- Description of miscibility gaps in the Ni-Cr and Fe-Cr systems
- Description of ionic systems, such as molten salts or ceramics

Example: assessment of the binary Ge-Ni system

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry 38 (2012) 23-34

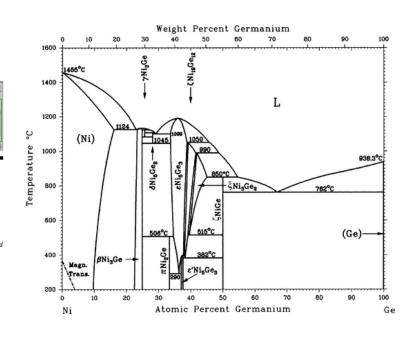
Contents lists available at SciVerse ScienceDirect

CALPHAD: Computer Coupling of Phase Diagrams and Thermochemistry

journal homepage: www.elsevier.com/locate/calphad

Thermodynamic study and re-assessment of the Ge-Ni system

Shan Jin ^{a,b,*}, Christian Leinenbach ^a, Jiang Wang ^a, Liliana I. Duarte ^a, Simona Delsante ^c, Gabriella Borzone ^c, Andrew Scott ^d, Andrew Watson ^d



^a EMPA, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining and Interface Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

b Computational Materials Laboratory, Ecole Polytechnique Fédérale de Lausanne, Station 12, CH-1015 Lausanne, Switzerland

c Department of Chemistry and Industrial Chemistry, University of Genova, Italy

d Institute for Materials Research, SPEME, University of Leeds, LS2 9JT, UK

Example: assessment of the binary Ge-Ni system

- Work flow for thermodynamic assessment
 - Review of literature data
 - Own measurements (phase diagram, calorimetry)
 - Thermodynamic modeling
 - Modeling of pure elements ${}^{0}G_{i}^{\varphi}(T) = G_{i}^{\varphi}(T) H_{i}^{SER} = a + bT + cT \ln T + dT^{2} + eT^{3} + fT^{-1} + gT^{7} + hT^{-9}$
 - Modeling of solution phases $G_m^{\varphi} = \sum x_i^0 G_i^{\varphi} + RT \sum x_i \ln(x_i) + {^E}G_m^{\varphi} + {^{mag}}G_m^{\varphi}$

$${}^{E}G_{m}^{\varphi} = X_{Ge}X_{Ni} \sum_{j=0}^{n} {}^{(j)}L_{Ge,Ni}^{\varphi}(X_{Ge} - X_{Ni}) \quad {}^{(j)}L_{Ge,Ni}^{\varphi} = A_{j} + B_{j}T + C_{j}T \ln T \qquad {}^{\text{mag}}G_{m}^{\varphi} = RT \ln(\beta^{\varphi} + 1)f(\tau^{\varphi})$$

- Modeling of ordered phases $G_m = G_m^{disord}(x_i) + G_m^{ord}(y_i', y_i') G_m^{ord}(x_i)$
- Modeling of B8-type non-stoichiometric compound Ni₅Ge₃
 → 3-sublattice model (Ge)(Ni)(Va,Ni)

$$G_m^{Ni_5Ge_3} = y_{Va}^{III\ 0} G_{Ge:Ni:Va}^{Ni_5Ge_3} + y_{Ni}^{III\ 0} G_{Ge:Ni:Ni}^{Ni_5Ge_3} + RT(y_{Ni}^{III} \ln y_{Ni}^{III} + y_{Va}^{III} \ln y_{Va}^{III}) + {}^E G_m^{Ni_5Ge_3}$$

$${}^{0}G_{Ge;Ni:Va}^{Ni_{5}Ge_{3}} = {}^{0}G_{Ge}^{DIAMOND_A4} + {}^{0}G_{Ni}^{FCC_A1} + E + FT$$

$${}^{0}G_{Ge;Ni:Ni}^{Ni_{5}Ge_{3}} = {}^{0}G_{Ge}^{DIAMOND_A4} + 2{}^{0}G_{Ni}^{FCC_A1} + E' + F'T$$

$$^{E}C_{m}^{Ni_{5}Ge_{3}}=y_{Va}^{III}y_{Ni}^{III}L_{Ge;Ni;Va,Ni}^{Ni_{5}Ge_{3}} \quad L_{Ge;Ni;Va,Ni}^{Ni_{5}Ge_{3}}=\sum_{n=0}(G_{n}+H_{n}T)(y_{Ni}^{III}-y_{Va}^{III})^{n}$$

Modeling of stoichiometric phases

$$G_{m}^{NiGe} = 0.5^{0} G_{Ni}^{FCC_A1} + 0.5^{0} G_{Ge}^{DIAMOND_A4} + a + b + cT \ln T + dT^{2} + eT^{3} + fT^{-1} + gT^{7}$$

$$G_{m}^{Ni_{x}Ge_{y}} = \frac{x}{x + y} {}^{0} G_{Ni}^{FCC_A1} + \frac{y}{x + y} {}^{0} G_{Ge}^{DIAMOND_A4} + I_{Ni_{x}Ge_{y}} + J_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} + I_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} + I_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} + I_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} + I_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} + I_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}} T_{Ni_{x}Ge_{y}}$$

Example: assessment of the binary Ge-Ni system

- Work flow for thermodynamic assessment
 - Parameter optimization (→ least-square fitting algorithm in Thermo-Calc)

Table 2
Thermodynamic parameters of the Ge-Ni binary system.^a

Phase	Thermodynamic parameters				
Liquid: (Ge,Ni) ₁	${}^{0}L_{CeNi}^{Liquid} = -167121.320 + 155T - 15T \ln T$				
	${}^{1}L_{Ge Ni}^{Liquid} = 84737.489 - 25.014T$				
	$^{2}L_{Ce,Ni}^{Liquid} = 37441.590 - 16.001T$				
	$^{3}L_{G_{c}Ni}^{Liquid} = -63650.323 + 21.983T$				
FCC_A1 ^b : (Ge,Ni) ₁	${}^{0}L_{GeNi}^{FCCA1} = -122000 + 36.88T$				
	${}^{1}L_{Ge,N}^{FCC,A1} = 134000 - 46.8T$				
	${}^{0}Tc_{Ge,Ni}^{FCC,A1} = -3750$				
$\beta Ni_3Ge^b;(Ge,Ni)_{0.75}(Ge,Ni)_{0.25}$	$^{0}G_{GeNi}^{JNi_{5}Ge} - 0.75^{0}G_{Ge}^{DIAMOND_A4} - 0.25^{0}G_{Ni}^{FCC_A1} = -46827.192 + 3.05T_{Ni}^{FCC_A1}$				
	${}^{0}G_{NE,Ge}^{[Ni]_{5}Ce} - 0.25{}^{0}G_{Ge}^{DIAMOND_A4} - 0.75{}^{0}G_{Ni}^{FCC_A1} = -46827.192 + 3.05T$				
	${}^{0}G_{GeGe}^{\bar{N}h_{\bar{b}}Ge} - {}^{0}G_{Ge}^{DIAMOND_A4} = 0$				
	${}^{0}C_{N!Ni}^{[NI_{3}Ge} - {}^{0}G_{Ni}^{FCC_A1} = 0$				
	${}^{0}L_{Ge,Ni:Ge}^{DN_{15}Ge} = -93654.384 + 6.1T$				
	${}^{0}L_{Ge,NiNi}^{lNi_{5}Ge} = -93654.384 + 6.1T$				
	${}^{1}L_{Ge,NEGe}^{BN_{5}Ge} = 23700 - 9.72T$				
	$^{1}L_{Ge,NENi}^{RNi_{5}Ge} = 23700 - 9.72T$				
	${}^{0}L_{Ni;Ge}^{[Ni;Ge]}=0$				
	$0L_{Ni,GeGe}^{RNi_2Ge}=0$				
	$^{1}L_{Ni,Ge,Ni}^{RNi_{2}Ge} = 7900 - 3.24T$				
	$^{1}L_{GeGe,Ni}^{RN_{5}Ge} = 7900 - 3.24T$				
γNi ₃ Ge: (Ge) _{0.256} (Ni) _{0.744}	${}^{0}G_{NB,Ge}^{\gamma NS,Ge} - 0.256 {}^{0}G_{Ge}^{DIAMOND_A4} - 0.744 {}^{0}G_{Ni}^{FCC_A1} = -34315 + 4.301T$				

δNi_5Ge_2 : $(Ge)_{0.28}(Ni)_{0.72}$	$^{0}G_{Ni,Ce}^{\partial Nb_{2}Ge_{2}}-0.28^{0}G_{Ge}^{DIAMOND_A4}-0.72^{0}G_{Ni}^{FCC_A1}=-34918+3.69T$
Ni ₂ Ge: (Ge) _{0.335} (Ni) _{0.665}	${}^{0}G_{NE,Ge}^{N_{S,Ge}} - 0.335{}^{0}G_{Ge}^{DIAMOND_A4} - 0.665{}^{0}G_{Ni}^{FCC_A1} = -38227.151 + 4.8497$
Ni ₅ Ge ₃ : (Ge)(Ni)(Va,Ni) ^c	$^{0}G_{CeNEVa}^{N_{2},Ce_{2}}-^{0}G_{Ce}^{DIAMOND_A4}-^{0}G_{Ni}^{FCC_A1}=-54286.304-5.624T$
	$^{0}G_{GeNtN}^{N_{0}Ge_{2}} - ^{0}G_{Ge}^{DIAMOND_A4} - 2^{0}G_{N}^{FCC_A1} = -110540 + 11.717T$
	${}^{0}L_{Ce,NEN,V\alpha}^{Ne,Ge_3} = -2655.913 - 2.932T$
	${}^{1}L_{GeNi:Ni,Va}^{Ni;Gea} = -17558.144$
$\epsilon' Ni_5 Ge_3$: $(Ge)_{0.375} (Ni)_{0.625}$	${}^{0}G_{N8,Ge}^{c'N8,Ge} - 0.375 {}^{0}G_{N8}^{DIAMOND_A4} - 0.625 {}^{0}G_{N8}^{ECC_A1}$ = $-37350.646 + 3.328T$
NiGe; (Ge) _{0.5} (Ni) _{0.5}	$ \begin{aligned} ^{0}G_{\text{NiCe}}^{\text{NiCe}} &= 0.5^{0}G_{\text{DIAMOND},A4}^{\text{DIAMOND},A4} - 0.5^{0}G_{\text{Ni}}^{\text{FCC},A1} \\ &= -30992.547 + 0.9677 - 0.17 \ln T + 6.015E - 05T^{2} \\ &- 9.471E - 08T^{3} + 2.393E - 22T^{7} - 14960.491T^{-1} \end{aligned} $

a Gibbs energies are expressed in I/mol. The lattice stabilities were given by Dinsdale [44].

b The ordered phase βNi₃Ge with L1₂ structure and disordered phase FCC_A1 are modeled as the same phase.

^c The sublattice model of the Ni₅Ge₃ phase is given as integral stoichiometry since 1/3 cannot be exactly expressed as a decimal.

Example: assessment of the binary Ge-Ni system

- Work flow for thermodynamic assessment
 - Comparison simulation vs experimental data

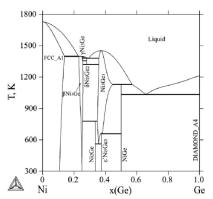


Fig. 4. Calculated phase diagram of the Ge-Ni binary system from the present

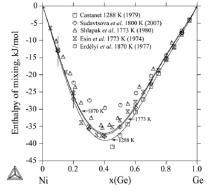


Fig. 6. Calculated enthalpy of mixing of liquid alloys compared with experimental data. (Ref. states; liquid Ge and liquid Ni).

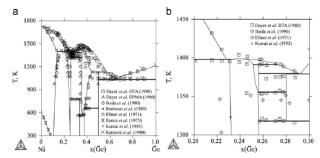


Fig. 5. (a) Calculated phase diagram of the Ge-Ni binary system compared with experimental data. (b) Ni-rich part of the phase diagram compared with experimental data

Example: assessment of the binary Ge-Ni system

- Work flow for thermodynamic assessment
 - Comparison simulation vs experimental data

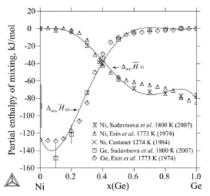


Fig. 7. Calculated partial enthalpy of Ni and Ge in liquid alloys at 1800 K compared with experimental data. (Ref. states: liquid Ge and liquid Ni).

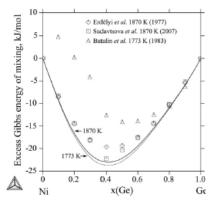


Fig. 9. Calculated excess Gibbs energy of mixing of liquid alloys compared with experimental data. (Ref. states: liquid Ge and liquid NI).

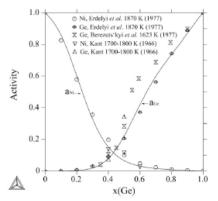


Fig. 8. Calculated activity of Ge and Ni in the Ge-Ni melt at 1870K compared with experimental data. (Ref. states: liquid Ge and liquid Ni).

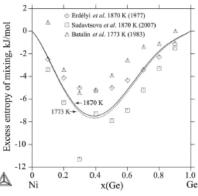


Fig. 10. Calculated excess entropy of mixing of liquid alloys compared with experimental data. (Ref. states: liquid Ge and liquid NI).

Thermodynamic databases

Steel and Fe-alloys

TCFE11 Elements, Systems, Phases and Properties

Included Elements

There are 29 elements included in the most recent version of the database.

Ar	Al	В	С	Ca	Ce	Co	Cr	Cu	Fe
Н	Mg	Mn	Мо	N	Nb	Ni	О	Р	Ru
S	Si	Та	Ti	V	W	Υ	Zn	Zr	

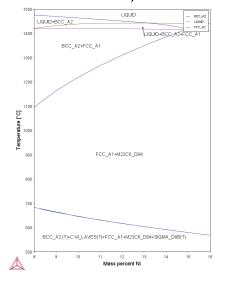
The most recent version of the database contains the following:

- 345 assessed binary systems
- 290 assessed ternary systems
- 79 assessed quaternary systems
- Several assessed quinary systems

Non-equilibrium transformations

Thermodynamic simulation software tools allow calculating phase equilibria in multicomponent systems as well as equilibrium thermodynamic properties, i.e. complete diffusion in the liquid and solid states are assumed

X5CrNiMo18-12-3, influence of Ni

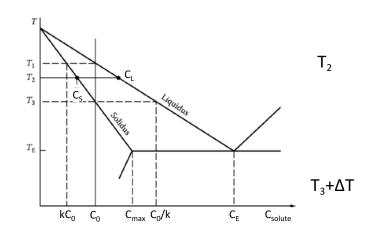


Non-equilibrium transformations

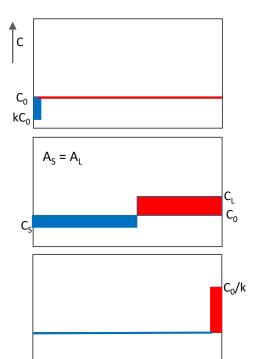
- Thermodynamic simulation software tools allow calculating phase equilibria in multicomponent systems as well as equilibrium thermodynamic properties, i.e. complete diffusion in the liquid and solid states are assumed
- Metals processing includes many non-equilibrium steps
 - casting & soldification
 - Solutionizing/homogenization heat treatments
 - Quenching and precipitation hardening
 - Joining (soldering/brazing, diffusion bonding)
- During service of high-performance alloys, diffusion-controlled processes can take place
 - Grain coarsening
 - Precipitate growth
 - Formation of intermetallic compounds at interfaces
- How can these non-equilibrium and time-dependent processes be modeled and simulated?

The equilibrium solidification model

- Under equilibrium conditions, the solidification path in an alloy is given by the lever rule
- The equilibrium solute concentrations are
 - $kC_0 \le C_S \le C_0$
 - $C_0 \le C_L \le C_0/k < X_E$



T₁-ΔT



The Scheil-Gulliver solidification model

- In reality, solidification typically occurs under non-equilibrium conditions, i.e. the cooling rate is too high to allow time for complete redistribution of alloying elements according to equilibrium
- A qualitative description of the solute redistribution during solidification processes is possible with the so-called "Scheil-Gulliver" model, which was first formulated in 1913 by Gulliver.
- The basic assumptions of the model are:
 - Diffusion of all elements in the liquid phase is infinitely fast
 - Diffusion of all elements in the solid phases is zero
 - The liquid/solid interface is in thermodynamic equilibrium

The Scheil-Gulliver solidification model

The corresponding differential equation for the mass balance between solid and liquid was presented by Scheil in 1942:

$$(C_L - C_S)df_S = (f_L)dC_L$$

where C_S is the local composition of the solid, C_L of the liquid, f_S is the fraction of solid and f_L is the fraction of liquid

■ With the partioning coefficient $k = C_s/C_L$ and considering that mass is conserved $(f_L + f_s = 1)$, the mass balance may be rewritten as

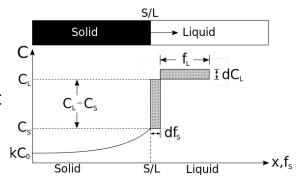
$$C_L(1-k)df_S = (1-f_S)dC_L$$

Using the boundary condition $C_L = C_0$ at $f_s = 0$

$$\int_{0}^{f_{S}} \frac{df_{S}}{1 - f_{S}} = \frac{1}{1 - k} \int_{C_{0}}^{C_{L}} \frac{dC_{L}}{C_{L}}$$

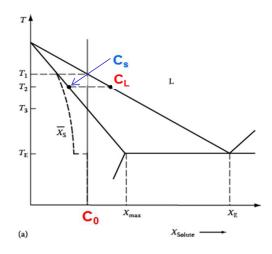
 Integrating results in the Scheil-Gulliver equation for composition of the liquid/solid during solidification gives

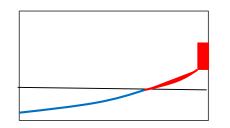
$$C_L = C_0(f_L)^{k-1}$$
; $C_S = kC_0(1 - f_S)^{k-1}$



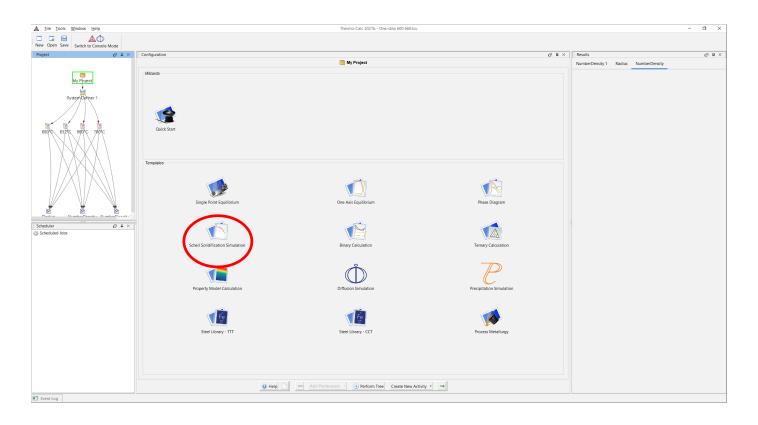
The Scheil-Gulliver solidification model

- Because of complete diffusion in the liquid, the liquid composition is always uniform, although this uniform composition changes as solidification continues
- The composition of the solid varies continuously as the solidification front advances and the solid retains this compositional variation after the front has passed
- The composition of the solid deviates from the equilibrium composition
- Solidification continues down to the eutectic temperature; when TE is reached, the remaining liquid will have the eutectic composition, and it solidifies to form a eutectic solid.

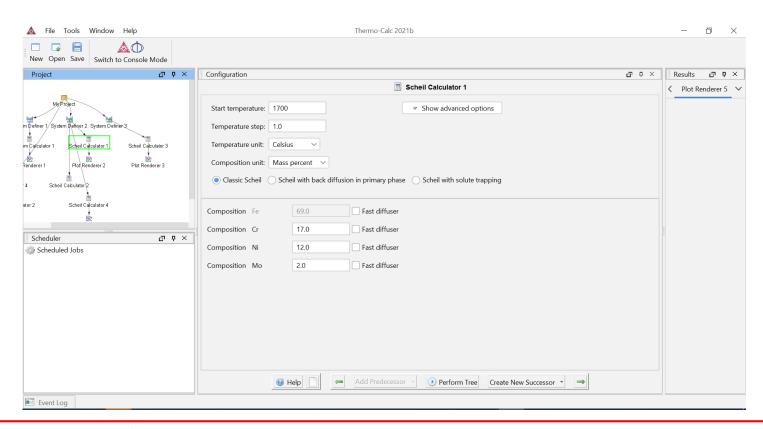




The Scheil-Gulliver module

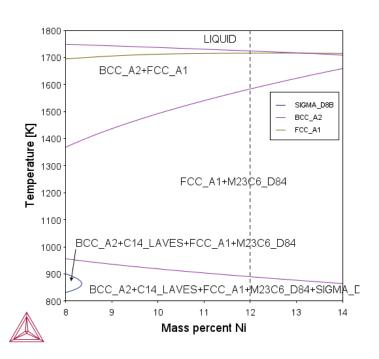


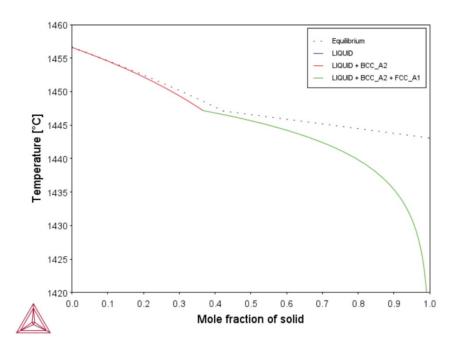
The Scheil-Gulliver module



The Scheil-Gulliver solidification model

Solidification of 1.4404/X3CrNiMo 17-12-2

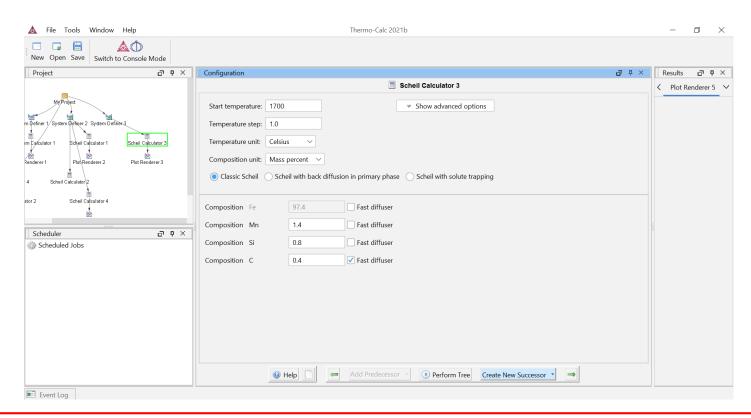




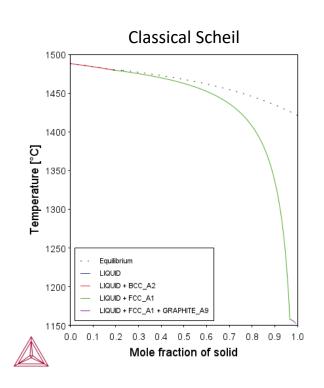
S-G with fast diffusers

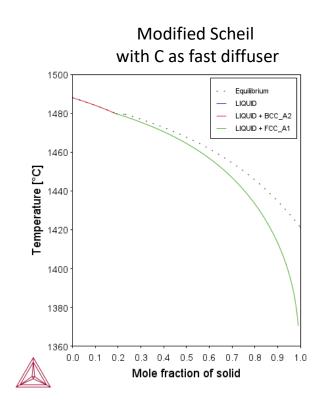
- Interstitial elements in steel like C, N or O have high diffusion rates
- The assumption of no diffusion in the solid phase during solidification is thus not correct at most industrial solidification rates.
- Scheil with fast diffusers is a variant of the classic Scheil simulation that was developed mainly for steel applications
- The assumptions are
 - Diffusion of all elements in the liquid phase is infinitely fast
 - Diffusion of all elements in the solid phases except the ones defined as "fast diffusers" is zero
 - Diffusion of the elements defined as "fast diffusers" is infinitely fast in the solid phase
 - The liquid/solid interface is in thermodynamic equilibrium

S-G with fast diffusers



Solidification of Fe-1.4Mn-0.8Si-0.4C

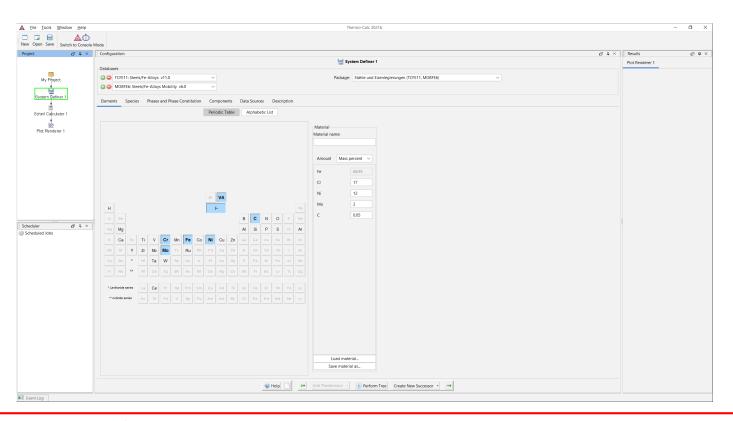




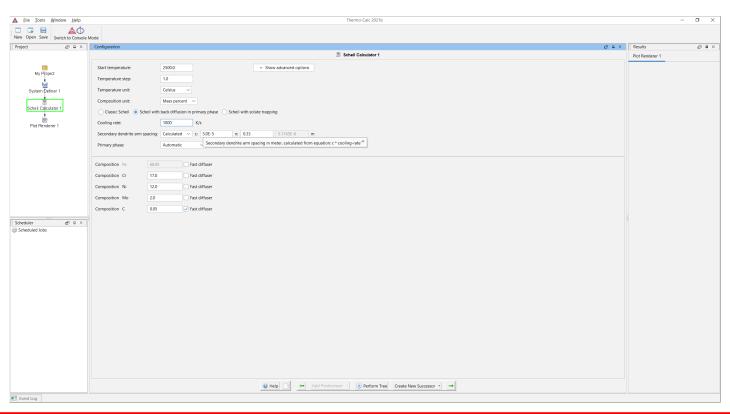
S-G with back-diffusion in primary phase

- This model uses diffusion data from a mobility database to calculate back diffusion in the primary phase
- As with the Scheil-Gulliver model, this model assumes infinitely fast diffusion in the liquid material, but it allows for limited diffusion in the primary phase of the solid material.
- The assumptions are
 - Diffusion of all elements in the liquid phase is infinitely fast
 - Diffusion of all elements in the primary solid phase is quantitatively calculated using mobility data, a cooling rate, and a domain size (typically this will be the secondary arm spacing)
 - The liquid/solid interface is in thermodynamic equilibrium
- Using diffusion data from a mobility database, it quantitatively takes into account the real back diffusion of all elements in the primary solid phase (typically the FCC or BCC phase)

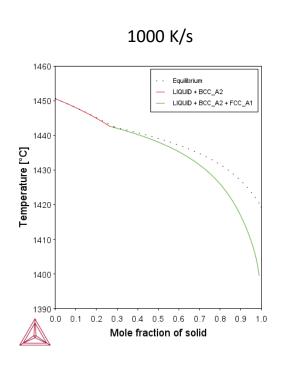
S-G with back-diffusion in primary phase

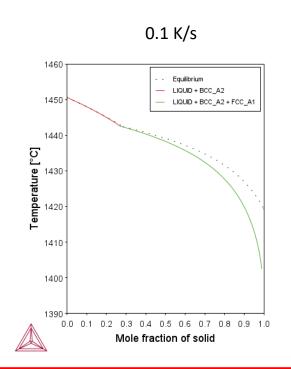


S-G with back-diffusion in primary phase



Solidification of 1.4404/X3CrNiMo 17-12-2





Multicomponent diffusion theory

■ Fick's 1st and 2nd law describe the flux of a species k in a concentration gradient (1) and the solute balance as a function of time (2), respectively

$$J_k = -D_k \frac{\partial c_k}{\partial x}$$
 (1) and $\frac{\partial c_k}{\partial t} = D_k \frac{\partial^2 c_{Bk}}{\partial x^2}$ (2)

- If an alloy contains 2 or more species, the diffusivities D_k not only depend on the concentration but also on the concentration gradient
- A multicomponent extension to Fick's 1st law was first expressed by Onsager in 1931, postulating that each flux is linearly related to every thermodynamic force

$$J_k = -\sum_{i=1}^n L'_{ki} \frac{\partial \mu_i}{\partial x}$$

where the μ_i terms are the chemical potentials for the various species, which are unique functions of the composition ($\mu_i = f(c_1, c_2, c_3, ..., c_n)$) and L'_{ki} is the proportionality factor, which depends on the mobility of the individual species

The flux J_k is defined such as $\sum_{k=1}^n V_k J_k = 0$ (V_k: partial molar volume of k)

Multicomponent diffusion theory

 Generally, it is convenient to express the fluxes as functions of gradients in concentration rather than gradients in chemical potential

$$J_{k} = -\sum_{i=1}^{n} L'_{ki} \sum_{j=1}^{n} \frac{\partial \mu_{i}}{\partial c_{j}} \frac{\partial c_{j}}{\partial x}$$

With $D_{kj} = -\sum_{i=1}^{n} L'_{ki} \frac{\partial \mu_i}{\partial c_i}$ (unreduced diffusivities)

$$J_k = -\sum_{j=1}^n D_{kj} \frac{\partial c_j}{\partial x}$$

- The $\frac{\partial \mu_i}{\partial c_i}$ values are the so-called thermodynamic factors
 - → the diffusivities consist of a thermodynamic and a kinetic part

Kinetic modeling

- Atomic mobilities are purely kinetic, element specific properties, defined as the velocity of a species per unit force (unit: $\frac{m^2/s}{I/mol}$)
- The mobility coefficient for an element B in metallic matrix can be written as

$$M_B = \frac{M_B^0}{RT} \exp\left(\frac{-Q_B}{RT}\right)$$

where M_B^0 is the compositional-dependent frequency factor and Q_B the activation enthalpy

■ The composition-dependency can be represented as a linear combination of the values at each endpoint of the composition space and a Redlich-Kister term

$$\Phi_{B} = \sum_{i} x_{i} \Phi_{B}^{i} + \sum_{i} \sum_{j>i} x_{i} x_{j} \left[\sum_{r=0}^{m} {}^{r} A_{B}^{i,j} (x_{i} - x_{j})^{r} \right]$$

 Φ_B represents lnM_B^0 or Q_B

 Φ_B^i is the value of Φ_B for pure i and thus represents one of the endpoints in the composition space

 ${}^r\!A_B^i$ are binary interaction parameters, the commas separating different species interacting with each other x_i and x_j are mole fractions for elements i and j, respectively

As in the case of thermodynamic data, the model parameters Φ_B^i , $^rA_B^i$,... are determined by an optimization procedure (considering experimental data)

Kinetic modeling

- The multi-component diffusion theory has been implemented in DICTRA (now TC diffusion module)
- The mobilities are stored in the mobility databases
- The reason to store individual mobilities rather than interdiffusion coefficients is that in an n-component system, there are n mobilities and (n-1)² interdiffusion coefficients
- The mobilities are related to the interdiffusion coefficients according to

$$L'_{ki} = \sum_{i=1}^{n} (\delta_{ik} - c_k V_i) c_i y_{va} M_i$$

 δ_{ik} is the Kronecker delta, i.e. $\delta_{ik}=1$ when j=k and $\delta_{ik}=0$ otherwise

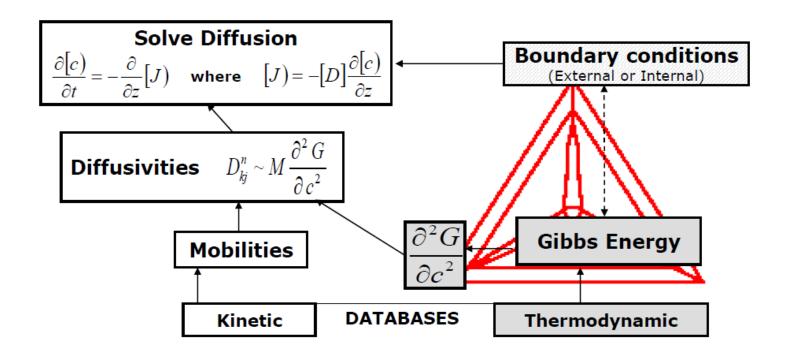
 c_k and c_i are the amounts of k and i per unit volume

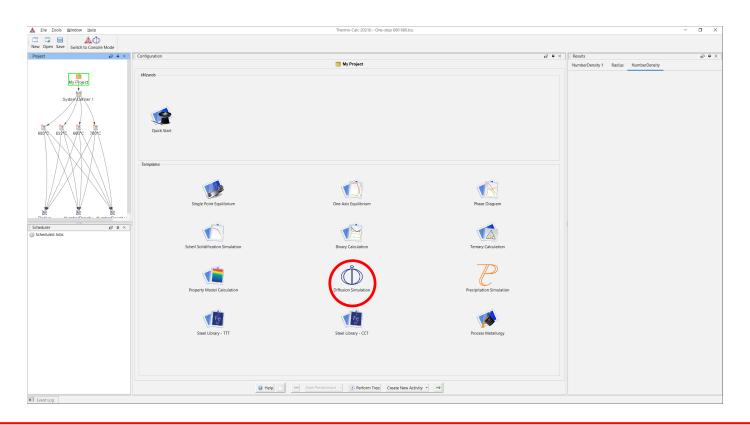
 V_i is the partial molar volume of element i

 y_{va} is the fraction of vacant lattice sites on the sublattice where i is dissolved

 M_i is the mobility of i when i is interstitial and the mobility divided by y_{va} when i is substitutionally dissolved

Kinetic modeling withe Thermo-Calc





Example: Brazing of diamond (C) to steel

Computational Materials Science 78 (2013) 74-82

Contents lists available at SciVerse ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

Modeling and simulation of the TiC reaction layer growth during active brazing of diamond using DICTRA

W.J. Zhu ^{a,b}, J. Wang ^{a,c}, L.B. Liu ^{b,d}, H.S. Liu ^{b,d}, Z.P. Jin ^{b,d}, C. Leinenbach ^{a,*}

^a Empa-Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Joining Technologies and Corrosion, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland

^b School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

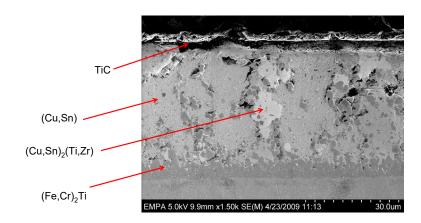
^c School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004, PR China

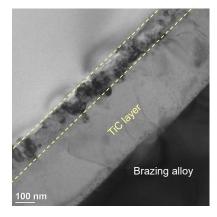
d Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

EPFL

Example: Brazing of diamond (C) to steel

- Vacuum brazing 930 ºC /10 min
- Filler: Cu-14.4Sn-10.2Ti-1.5Zr (mass %)
- Base material: X2Cr Ni Mo 18 14 3 stainless steel (AISI 316)
- Thickness of brazing layer: ~50 μm





Example: Brazing of diamond (C) to steel

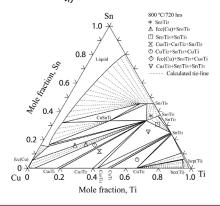
Thermodynamics

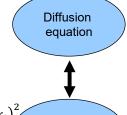
$$G_{mix} = G^0 + G_{mix}^{ideal} + G_{mix}^{excess}$$

$$G_{mix} = \sum_{i} x_i G_i^0 + RT \sum_{i} x_i \ln x_i + \sum_{i} \sum_{j>i} x_i x_j \Omega_{ij}$$

$$\Omega_{i,j}^{\phi} = {}^{0}\Omega_{i,j}^{\phi} + {}^{1}\Omega_{i,j}^{\phi}(x_i - x_j) + ({}^{1}\Omega_{i,j}^{\phi})^2(x_i - x_j)^2...$$

$$^k\Omega_{i,i}^{\phi} = A + BT + CT \ln T$$





Diffusivity

Kinetics/Diffusion

$$\boldsymbol{J}_{k} = -\sum_{i=1}^{n} D_{kj}^{n} \nabla \cdot \boldsymbol{c}_{i} \qquad \frac{\partial \boldsymbol{c}_{k}}{\partial t} = -\nabla \cdot \boldsymbol{J}_{k}$$

$$D_{kj}^{n} = \sum_{i=1}^{n} (\delta_{ik} - x_{k}) x_{i} M_{i} (\frac{\partial \mu_{i}}{\partial x_{j}} - \frac{\partial \mu_{i}}{\partial x_{n}})$$

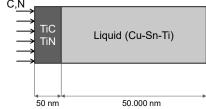
$$M_B = \exp(\frac{-Q_B + RTLnM_B^0}{RT}) \frac{1}{RT}^{mg} \Omega$$

$$=\exp(\frac{\Delta G^*}{RT})\frac{1}{RT}^{mg}\Omega$$

$$\Delta G^* = \Phi_B$$

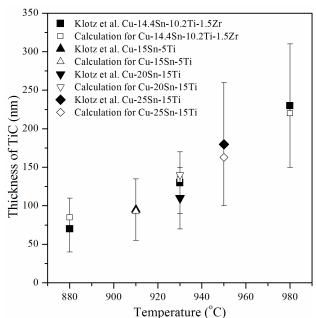
$$= \sum_{i} x_{i} \Phi_{B}^{i} + \sum_{i} \sum_{j>i} x_{i} x_{j} \left[\sum_{r=0}^{m} {}^{r} \Phi_{B}^{i,j} (x_{i} - x_{j})^{r} \right]$$

$$C, N$$

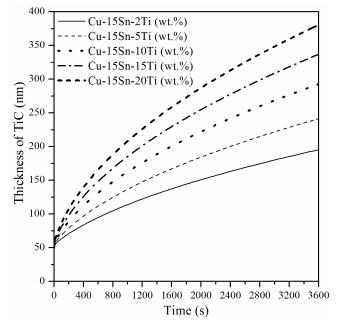


Example: Brazing of diamond (C) to steel

Simulated influence of alloy composition + experimental results



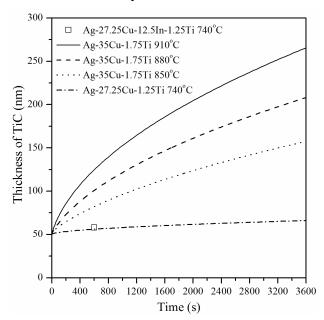
 Simulated influence of amount of Ti on TiC growth in brazing diamond at 930°C



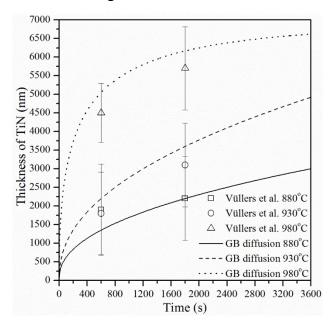
/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./

Example: Brazing of diamond (C) to steel

Simulated influence of Ag-based filler alloy



 TiN reaction layer growth during brazing of AIN ceramics

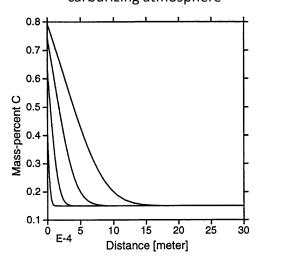


/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./

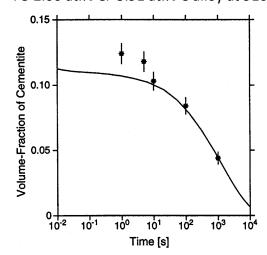
EPFL

Other examples

Calculated C-concentration profiles after 100, 1000, 5'000 and 18'000 s at 900°C in a carburizing atmosphere



Calculated volume fraction of cementite as a function of time, during austenitization of an Fe-2.06 at.% Cr-3.91 at.% C alloy at 910°C



/A. Borgenstam et al., Journal of Phase Equilibria 21(3) (2000)

Simulation of precipitation reactions

- Phase transformations start with the formation of stable nuclei of a size larger than the critical radius grown at expenses of available elements in the matrix.
- The growth of the nucleus ends when the thermodynamic equilibrium is reached, i.e. chemical potentials of each element are equal anywhere in the system.
- Assuming spherical nuclei, the nucleation rate can be described as

$$J(t) = J_s exp\left(-\frac{\tau}{t}\right)$$

$$J_{s} = Z\beta^{*}N_{0}exp\left(-\frac{\Delta G^{*}}{kT}\right)$$

$$\Delta G^* = \frac{16\pi\sigma^3}{3\Delta G_V^{\alpha \to P}}$$

 J_s : steady state nucleation rate

 τ : incubation time

Z: Zeldovich factor

 β^* : rate at which atoms are attached to critical nucleus

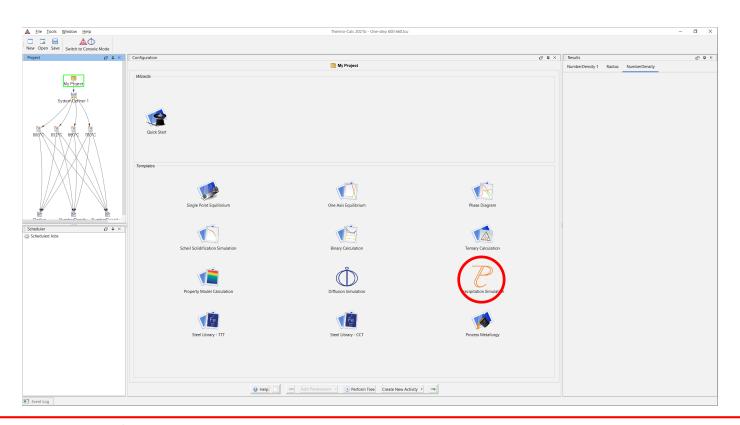
 N_0 : number of available nucleation sites per unit volume

 ΔG^* : nucleation barrier

 σ : interfacial energy

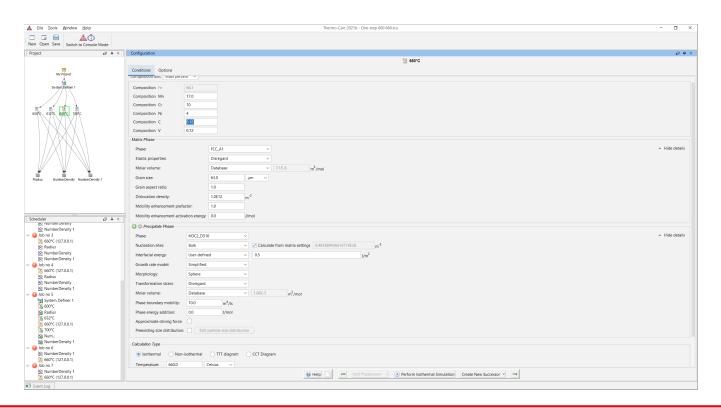
 $\Delta G_V^{\alpha \to P}$: driving force for formation of precipitates P from α matrix

The precipitation module



The precipitation module

Example: Carbide precipitation in Fe shape memory alloy



Learning objectives

- Thermodynamic and kinetic modeling
 - Understand the key concepts of thermodynamic modeling, including solution phases and the mathematical description of phase properties.
 - > Differentiate between ideal, regular, and real solution models and their respective assumptions.
 - Redlich-Kister formalism for mathematical description of interactions
 - Understanding the concepts of advanced solution models: (sub)n-regular solution model; sub-lattice model; quasi-chemical model
 - Understanding the concepts of equilibrium and non-equilibrium solidification models:
 - > Lever rule for equilibrium solidification
 - Scheil-Gulliver solidification for rapid cooling scenarios
 - Advanced variations of Scheil-Gulliver models (with fast diffusers, e.g., interstitial elements; with back-diffusion in primary solid phases.

Practical applications

- Use Thermo-Calc to assess thermodynamic and kinetic behaviors in multicomponent systems.
 - > Casting and solidification, heat treatments (e.g., solutionizing, quenching, and precipitation hardening), joining processes (e.g., brazing, soldering, and diffusion bonding), grain growth