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Thermodynamic modeling

 The CALPHAD method is based on the thermodynamic modeling of solution phases and
stoichiometric compounds

 For all solution phases, the Gibbs energy G must be determined

𝐺𝐺 = 𝐺𝐺0 + 𝐺𝐺𝑚𝑚𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐺𝐺𝑚𝑚𝑒𝑒𝑒𝑒 + 𝐺𝐺𝑚𝑚
𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Contribution
of pure elements Ideal mixing

contribution

Contribution
due to non-ideal

interactions

physical contribution
(e.g. magnetic)

 Solution phase = solid solution (e.g. FCC, BCC, HCP….) or LIQUID
 Thermodynamic modeling implies the mathematical description of each phase, thereby

considering the physical properties of the phase (e.g. lattice structure, Cp, etc.) as precisely
as possible
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 The integral Gibbs energy of a pure element 𝜑𝜑 in the state i (neglecting p) is
𝐺𝐺𝑖𝑖
𝜑𝜑(𝑇𝑇) = 𝐻𝐻 − 𝑇𝑇𝑇𝑇

 Considering the definitions of H and S this can be written as

𝐺𝐺𝑖𝑖
𝜑𝜑(𝑇𝑇) = 𝐻𝐻𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 + �

0

𝑇𝑇
𝐶𝐶𝑝𝑝𝑑𝑑𝑑𝑑 − 𝑇𝑇�

0

𝑇𝑇 𝐶𝐶𝑝𝑝
𝑇𝑇 𝑑𝑑𝑑𝑑

 In the case of elements, the functions recommended by Scientific Group Thermodata Europe 
(SGTE) are generally used for representing 𝐺𝐺𝑖𝑖

𝜑𝜑:
0𝐺𝐺𝑖𝑖

𝜑𝜑 𝑇𝑇 = 𝐺𝐺𝑖𝑖
𝜑𝜑 𝑇𝑇 − 𝐻𝐻𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑇𝑇𝑇𝑇𝑇𝑇 𝑇𝑇 + 𝑑𝑑𝑇𝑇2 + 𝑒𝑒𝑇𝑇3 + 𝑓𝑓𝑇𝑇−1 + 𝑔𝑔𝑇𝑇7 + ℎ𝑇𝑇−9

 For ferromagnetic substances, a magnetical ordering term 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝜑𝜑 needs to be added:

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝜑𝜑 𝑇𝑇 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 1 + 𝛽𝛽 𝑔𝑔(𝜏𝜏)

Thermodynamic modeling
Pure elements

with 𝐻𝐻𝑚𝑚𝑆𝑆𝑆𝑆𝑆𝑆: enthalpy of the element/substance in its defined reference state at 298.15K and 1bar

Where a, b, c are the model parameters

where τ = T/TC, TC is the critical temperature for magnetic transition, β is the magnetic moment in Bohr magneton and g(τ) 
is the magnetic ordering function
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Thermodynamic modeling
Stoichiometric compounds

 The same approach can be extended to model the Gibbs energy function of a stoichiometric 
compound 𝜃𝜃

𝐺𝐺𝑖𝑖𝜃𝜃 𝑇𝑇 = �
𝑖𝑖

𝜈𝜈𝑖𝑖𝐻𝐻𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 + 𝐴𝐴 + 𝐵𝐵𝑇𝑇 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑇𝑇 + 𝐷𝐷𝑇𝑇2 + ⋯

where A, B, C. . . are the model parameters and νi are the stoichiometric coefficients for the elements that make 
up the compound

 For compounds with zero Cp of formation or where Cp is not known, a simpler expression can
be used

𝐺𝐺𝑖𝑖𝜃𝜃 𝑇𝑇 = �
𝑖𝑖

𝜈𝜈𝑖𝑖𝐺𝐺𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 + Δ𝑓𝑓𝐻𝐻𝜃𝜃 − 𝑇𝑇Δ𝑓𝑓𝑆𝑆𝜃𝜃 = �

𝑖𝑖

𝜈𝜈𝑖𝑖𝐺𝐺𝑖𝑖
𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐼𝐼 + 𝐽𝐽𝐽𝐽
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Thermodynamic modeling
Example: Gibbs energies of phases in pure iron

G(BCC) - G(BCC)

FCC
“Austenite” 

BCC
“δ-Ferrite” 

BCC
“Ferrite” 

Fe
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Thermodynamic modeling
Ideal solutions
 The simplest model for binary solutions is the ideal

solution model
 It can readily be extended to solutions of higher order

(more components)
 Its assumptions are that

 the distribution of the atoms A and B  is completely random 
 the exchange energy between atoms  of type A and B is 

equal to the  average exchange energy of A-A  bonds and B-
B bonds.

𝐺𝐺𝑚𝑚𝛼𝛼 = �
𝑖𝑖

𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖0 + 𝑅𝑅𝑅𝑅�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖
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Thermodynamic modeling
Regular solutions
 In regular solutions the exchange energy in A-B 

bonds is no longer equal to the average of the bond 
energies of A-A and B-B bonds.

 A mixing enthalpy ∆𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 = Ω𝑋𝑋𝐴𝐴𝑋𝑋𝐵𝐵 needs to be
added

 Ω is a (temperature dependent) parameter that
describes the interaction between A and B atoms

Ω = 𝑁𝑁𝑎𝑎𝑧𝑧 𝜀𝜀𝐴𝐴𝐴𝐴 −
𝜀𝜀𝐴𝐴𝐴𝐴 + 𝜀𝜀𝐵𝐵𝐵𝐵

2

 Depending on the type of bonds, Ω<0 (A and B “like” 
each other) or Ω>0 (A and B “dislike” each other)

𝐺𝐺𝑚𝑚𝛼𝛼 = �
𝑖𝑖

𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖0 + 𝑅𝑅𝑅𝑅�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖 + �
𝑖𝑖

�
𝑗𝑗>𝑖𝑖

𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗Ω𝑖𝑖𝑖𝑖

Na: Avogrado constant
z: coordination number
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Thermodynamic modeling
Regular solutions

 Case Ω<0: A and B “like” each other
 Gm remains concave at any temperature 

and the enthalpy of mixing only reinforces 
the “attractiveness” of A and B atoms.

 Case Ω>0: A and B “dislike” each other 
 At high temperature, -TΔSm still 

dominates and Gm remains concave. At 
lower temperature, the enthalpy of 
mixing dominates and can lead to 
demixing (miscibility gap).



Advanced Metallurgy – 2024/25 Thermodynamic and kinetic modeling and simulation 9

Thermodynamic modeling
Real solutions

 Real solutions deviate to variable extent from ideal or regular solutions. The reason  
for this can be that

1) The exchange energy of A-B bonds is not independent of the composition (no unique 
Ω);

2) The interaction between atoms of different type leads to a preferential arrangement of 
atoms A-B (instead of a random arrangement)

3) Atoms can only take certain positions in a crystal or the liquid (e.g. for  topological (size) 
or chemical reasons)

 These aspects are considered in
1) The (sub)n-regular solution model (no physics, just numerical)
2) The sub-lattice model
3) The quasi-chemical approach
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Thermodynamic modeling
Real solutions – the (sub)n-regular solution model

 The enthalpy of mixing is not necessarily symmetric and higher order terms allow introducing 
some degree of skewedness to the enthalpy of mixing curve 

 The Gibbs free energy is give as 

𝐺𝐺𝑚𝑚𝛼𝛼 = �
𝑖𝑖

𝑥𝑥𝑖𝑖𝐺𝐺𝑖𝑖0 + 𝑅𝑅𝑅𝑅�
𝑖𝑖

𝑥𝑥𝑖𝑖𝑙𝑙𝑙𝑙𝑥𝑥𝑖𝑖 + �
𝑖𝑖

�
𝑗𝑗>𝑖𝑖

𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗�
𝑘𝑘

𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 (𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗)𝑘𝑘

Where 𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 is a binary interaction parameter dependent on the value of k; 𝐿𝐿𝑖𝑖𝑖𝑖𝑘𝑘 =Ak+BkT+CkTlnT+…

 This numerical approach, which facilitates the calculation of phase diagrams, is the Redlich-
Kister formalism

 Examples for binary alloys of A and B
 Regular solution: 𝐿𝐿𝐴𝐴𝐴𝐴0 ≠ 0, 𝐿𝐿𝐴𝐴𝐴𝐴𝑘𝑘 (𝑘𝑘 ≥ 1) = 0
 Sub-regular solution: 𝐿𝐿𝐴𝐴𝐴𝐴0 , 𝐿𝐿𝐴𝐴𝐴𝐴1 ≠ 0, 𝐿𝐿𝐴𝐴𝐴𝐴𝑘𝑘 (𝑘𝑘 ≥ 2) = 0
 Sub-sub-regular solution: 𝐿𝐿𝐴𝐴𝐴𝐴0 , 𝐿𝐿𝐴𝐴𝐴𝐴1 , 𝐿𝐿𝐴𝐴𝐴𝐴2 ≠ 0, 𝐿𝐿𝐴𝐴𝐴𝐴𝑘𝑘 (𝑘𝑘 ≥ 3) = 0

 In some cases higher order interaction might not be neglected and a ternary interaction
parameter is introduced: 𝐺𝐺𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵𝑥𝑥𝐶𝐶𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴𝑘𝑘
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Thermodynamic modeling
Real solutions – the (sub)n-regular solution model

 The sub-regular solution model is used for substitutional
phases such as liquid, bcc, fcc, etc.

 It cannot be used for interstitial solutions, ordered
intermetallics or ceramic compounds

 There is little evidence for the need of interaction
parameters of any higher order than 2

 Prediction of thermodynamic properties of substitutional
phases is based on binary and ternary terms

 Example: enthalpy of mixing of liquid Mg-Zn
 experimental data from calorimetry measurements
 Data fitting leads to

𝐿𝐿𝑀𝑀𝑀𝑀−𝑍𝑍𝑍𝑍,𝑙𝑙𝑙𝑙𝑙𝑙
0 = -23500 kJ/mol
𝐿𝐿𝑀𝑀𝑀𝑀−𝑍𝑍𝑍𝑍,𝑙𝑙𝑙𝑙𝑙𝑙
1 = 8500 kJ/mol
𝐿𝐿𝑀𝑀𝑀𝑀−𝑍𝑍𝑍𝑍,𝑙𝑙𝑙𝑙𝑙𝑙
2 = -3500 kJ/mol
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Thermodynamic modeling
Example: influence of interaction parameters on phase stabilities

𝐺𝐺𝑚𝑚
𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 0𝐿𝐿𝐴𝐴,𝐵𝐵 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 � (+40000)  negative excess term

1200°C
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Thermodynamic modeling
Example: influence of interaction parameters on phase stabilities

𝐺𝐺𝑚𝑚
𝑒𝑒𝑒𝑒,𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 0𝐿𝐿𝐴𝐴,𝐵𝐵 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 � (−50000)  negative excess term

1200°C
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Thermodynamic modeling
Real solutions – extrapolation to higher order systems
 Extrapolation of thermodynamic properties of alloys into multi-component systems is based

on the summation of the binary and ternary excess parameters
 The formulae for doing this are based on various geometrical weightings of the mole

fractions
 Muggianu’s model:

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚,𝐴𝐴𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒 = 𝑥𝑥𝐴𝐴𝑥𝑥𝐵𝐵 𝐿𝐿𝐴𝐴𝐴𝐴0 + 𝐿𝐿𝐴𝐴𝐴𝐴1 𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵

+𝑥𝑥𝐵𝐵𝑥𝑥𝐶𝐶 𝐿𝐿𝐵𝐵𝐶𝐶0 + 𝐿𝐿𝐵𝐵𝐵𝐵1 𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐶𝐶
+𝑥𝑥𝐴𝐴𝑥𝑥𝐶𝐶 𝐿𝐿𝐴𝐴𝐶𝐶0 + 𝐿𝐿𝐴𝐴𝐶𝐶1 𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐶𝐶

 Kohler’s model:

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚,𝐴𝐴𝐴𝐴𝐴𝐴
𝑒𝑒𝑒𝑒 = 𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵 2 𝑥𝑥𝐴𝐴

𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵
�

𝑥𝑥𝐵𝐵
𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵

𝐿𝐿𝐴𝐴𝐴𝐴0 + 𝐿𝐿𝐴𝐴𝐴𝐴1
𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐵𝐵
𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐵𝐵

+ 𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐶𝐶 2 𝑥𝑥𝐵𝐵
𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶
𝐿𝐿𝐵𝐵𝐵𝐵0 + 𝐿𝐿𝐵𝐵𝐵𝐵1

𝑥𝑥𝐵𝐵 − 𝑥𝑥𝐶𝐶
𝑥𝑥𝐵𝐵 + 𝑥𝑥𝐶𝐶

+ 𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐶𝐶 2 𝑥𝑥𝐴𝐴
𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐶𝐶

�
𝑥𝑥𝐶𝐶

𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐶𝐶
𝐿𝐿𝐴𝐴𝐶𝐶0 + 𝐿𝐿𝐴𝐴𝐶𝐶1

𝑥𝑥𝐴𝐴 − 𝑥𝑥𝐶𝐶
𝑥𝑥𝐴𝐴 + 𝑥𝑥𝐶𝐶



Advanced Metallurgy – 2024/25 Thermodynamic and kinetic modeling and simulation 15

Thermodynamic modeling
Real solutions – the sublattice model
 A sublattice (SL) phase is conceptualized as a combination of 

interlocking sublattices where various components can mix
 The model is phenomenological, focusing on macroscopic behavior, and 

does not inherently define any specific crystal structure (but can)
 Consider a phase with N distinct lattice sites, each forming a SL; the fractional site occupation of

components on the different sublattices are:

𝑦𝑦𝑖𝑖𝑠𝑠 = 𝑛𝑛𝑖𝑖
𝑠𝑠

𝑁𝑁𝑠𝑠
or including vacancies 𝑦𝑦𝑖𝑖𝑠𝑠 = 𝑛𝑛𝑖𝑖

𝑠𝑠

𝑛𝑛𝑉𝑉𝑉𝑉
𝑠𝑠 +∑𝑖𝑖 𝑛𝑛𝑖𝑖

𝑠𝑠

Where 𝑛𝑛𝑖𝑖𝑠𝑠 number of atoms of component i on sublattice s; 𝑁𝑁𝑠𝑠 total number of sites on the sublattice
 Mole fractions are related to site fractions according to

𝑥𝑥𝑖𝑖 =
∑𝑠𝑠𝑁𝑁𝑠𝑠𝑦𝑦𝑖𝑖𝑠𝑠

∑𝑠𝑠 𝑁𝑁𝑠𝑠(1−𝑦𝑦𝑉𝑉𝑉𝑉𝑠𝑠 )
 The ideal entropy of mixing is made up of the configurational contributions from mixing on each SL

𝐺𝐺𝑚𝑚𝑖𝑖𝑖𝑖 = −𝑇𝑇𝑆𝑆𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑅𝑅𝑅𝑅�
𝑠𝑠

𝑁𝑁𝑠𝑠�
𝑖𝑖

𝑦𝑦𝑖𝑖𝑠𝑠𝑙𝑙𝑙𝑙𝑦𝑦𝑖𝑖𝑠𝑠
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Thermodynamic modeling
Real solutions – the sublattice model
 Lattice occupation:

 Consider a sublattice phase consisting of the elements A, B, C, 
and D 

 A and B share the same sublattice and C and D are confined to 
another sublattice: (A,B)1(C,D)1

 End members
 Four "complete occupation" configurations exist, representing

pure combinations: pure A or B on SL1 and either pure C or D on 
SL2 

 These four configurations are referred to as "end members" and 
define the reference Gibbs energy surface.

 The Gibbs energy of the phase is a combination of the end 
members, calculated as:

𝐺𝐺𝑚𝑚
𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑦𝑦𝐴𝐴𝑦𝑦𝐶𝐶𝐺𝐺𝐴𝐴𝐴𝐴0 + 𝑦𝑦𝐵𝐵𝑦𝑦𝐶𝐶𝐺𝐺𝐵𝐵𝐶𝐶0 + 𝑦𝑦𝐴𝐴𝑦𝑦𝐷𝐷𝐺𝐺𝐴𝐴𝐷𝐷0 + 𝑦𝑦𝐵𝐵𝑦𝑦𝐷𝐷𝐺𝐺𝐵𝐵𝐵𝐵0
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Thermodynamic modeling
Real solutions – the sublattice model
 Consider again the two-SL system (A,B)1(C,D)1

 The interactions A-C, A-D, B-C, B-D are controlled by the Gibbs energies of the compounds
AC, AD, BC and BD

 Mixing on the SLs controls A-B and C-D interactions and
𝐺𝐺𝑚𝑚𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒 = 𝑦𝑦𝐴𝐴1𝑦𝑦𝐵𝐵1𝐿𝐿𝐴𝐴,𝐵𝐵:∗

0 + 𝑦𝑦𝐶𝐶1𝑦𝑦𝐷𝐷1𝐿𝐿∗:𝐶𝐶,𝐷𝐷
0

 A sub-regular model can be introduced by making the interactions compositionally
dependent on the site occupation in the other SL

𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚
𝑒𝑒𝑒𝑒 = 𝑦𝑦𝐴𝐴1𝑦𝑦𝐵𝐵1𝑦𝑦𝐶𝐶2𝐿𝐿𝐴𝐴,𝐵𝐵:𝐶𝐶

0 + 𝑦𝑦𝐴𝐴1𝑦𝑦𝐵𝐵1𝑦𝑦𝐷𝐷2𝐿𝐿𝐴𝐴,𝐵𝐵:𝐷𝐷
0 + 𝑦𝑦𝐶𝐶1𝑦𝑦𝐷𝐷1𝑦𝑦𝐴𝐴2𝐿𝐿𝐴𝐴:𝐶𝐶,𝐷𝐷

0 + 𝑦𝑦𝐶𝐶1𝑦𝑦𝐷𝐷1𝑦𝑦𝐵𝐵2𝐿𝐿𝐵𝐵:𝐶𝐶,𝐷𝐷
0

 It is possible to add some site fraction dependence to these parameters

e.g. 𝐿𝐿𝐴𝐴,𝐵𝐵:𝐶𝐶
0 = 𝑦𝑦𝐴𝐴1𝑦𝑦𝐵𝐵1𝑦𝑦𝐶𝐶2 ∑𝜈𝜈 𝐿𝐿𝐴𝐴,𝐵𝐵:𝐶𝐶

𝜈𝜈 (𝑦𝑦𝐴𝐴1 − 𝑦𝑦𝐵𝐵1)𝜈𝜈
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Thermodynamic modeling
Applications of the sublattice model

 The sublattice model is one of the most predominant methods used to describe solution and
compound phases, e.g. for

 Line compounds in ternary systems
 e.g. Laves phase Fe2TiSi – (Fe)2(Ti)1(Si)1

 Interstitial phases, 
 e.g. carbides – (Fe,Cr,Ni,…)n(C,Va)m 

 Complex intermetallic compounds with significant variation in stoichiometry,
 e,g. Fe3Al – (Fe)3(Al,Va)1

 Order-disorder transformations
 e.g. Cu3Au – disordered phase (Cu,Au)1 ; ordered phase (Cu)3(Au)1
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Thermodynamic modeling
Real solutions – the quasi-chemical approach

 The regular solution model assumes a random distribution of atoms even though the 
enthalpy of mixing is not zero 

 In reality, a random solution is only expected at very high temperatures when the entropy 
term overwhelms any tendency for ordering or clustering of atoms; the atom arrangement is 
no longer random and the entropy of mixing, ∆mixS, may differ from the ideal value

 The quasi-chemical approach takes into account that the interactions between atoms A and B 
are more or less energetic, which leads to preferential formation of A-B bonds (Ω<0) or A-A 
and B-B bonds (Ω>0)

 The model is so–called because it has a mass–action equation which is typical in chemical 
reaction theory
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Thermodynamic modeling
Real solutions – the quasi-chemical approach

 Consider a binary system A-B of N atoms with the concentration xA and xB

 To understand the principle, the situation where the atoms are arranged on a 1-dimensional 
lattice is considered (“Ising”-model)

 The total number of bonds emanating from an atom of type A are xANz, with Z the 
coordination number of an atom (Z=2 in the 1D case)

 Of all the bonds emanating from an atom of type A, bonds of type A-B and of type B-A have to 
be subtracted (the A-B bonds are not  interchangeable with the B-A bonds)
 Number of A-A bonds: 𝑁𝑁𝐴𝐴𝐴𝐴 = 1

2
𝑥𝑥𝐴𝐴𝑍𝑍𝑍𝑍 − 𝑁𝑁𝐴𝐴𝐵𝐵 − 𝑁𝑁𝐵𝐵𝐴𝐴

 Number of B-B bonds: 𝑁𝑁𝐵𝐵𝐵𝐵 = 1
2

(𝑥𝑥𝐵𝐵𝑍𝑍𝑍𝑍 − 𝑁𝑁𝐴𝐴𝐴𝐴 − 𝑁𝑁𝐵𝐵𝐵𝐵)
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Thermodynamic modeling
The quasi-chemical approach – enthalpy term

 The total number of heterogeneous bonds, Nhet, is Nhet = NAB + NBA and the number of A-B 
bonds is equal to the number of B-A  bonds: NAB = NBA; The total number of bonds is NZ/2

 The concentration of bonds, nik, of the different types is: 

 These bonds contribute to the Gibbs free energy with γAA, γBB, and γAB (energy from the bonds) 
for A-A, B-B, and A-B as well as B-A bonds, respectively. The total Gibbs free energy, G, is then
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Thermodynamic modeling
The quasi-chemical approach – entropy term

 Assume that there is no contribution to entropy by e.g. change in lattice vibrations due to the 
A-B bonds

 The total configurational entropy of the system of bonds, Sc,bonds, can be calculated as

 With Sterling’s formula, i.e. ln(x!) = xln(x), this can be written as: 
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Thermodynamic modeling
The quasi-chemical approach
 In calculating the configurational entropy of the bond system, it 

was considered that A-B bonds, A-A bonds, B-B bonds, and B-A 
bonds are permutable amongst themselves

 However, A-B bonds are different from B-A bonds (not in their 
energy but with regard to permutability)

 It was assumed that the bonds can be  placed randomly on the 
lattice of bonds, but there are already some restrictions on the 
Ising chain model
 e.g. an A-A bond cannot be next to a B-B bond, neither can an A-B 

bond be to the left of a A-A bond (but a A-A bond or a B-A bond can).

 The arrangement of the bonds is hence somehow restricted (
2D model)

 Accounting for this in a 3D network of bonds in a detailed way 
becomes awfully complicated
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Thermodynamic modeling
The quasi-chemical approach

 The entropy cannot be larger than in a fully random arrangement of the atoms.
 For 1 mole (i.e. N = Na) of a binary mixture of atoms, the maximum configurational entropy is 

attained when xA = xB = 0.5 and Sc,atoms = RZln(2)
 If we do the same calculation for the bonds, again for 1 mole of atoms, the maximum  is 

obtained when nAA = nBB = nAB = nBA = 0.25, and its value is Sc,bonds = RZln(4)/2
 It cannot be that the configurational entropy changes just because we looked at another 

entity, i.e. bonds rather than atoms
 the entropy calculated for the bonds can be normalized with regard the one obtained for the

atoms by looking at their respective maximum value and assuming that also outside the
maximum with the normalization factor Φ

Φ =
𝑆𝑆𝑐𝑐,𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝑆𝑆𝑐𝑐,𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏
=
2𝑙𝑙𝑙𝑙(2)
𝑍𝑍𝑍𝑍𝑍𝑍(4)

=
1
𝑍𝑍

 The molar Gibbs free energy of mixing Gmix, as a function of the bond concentration of 
heterogenous bonds
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Thermodynamic modeling
The quasi-chemical approach

 The molar Gibbs free energy of mixing Gmix, as a function of the bond concentration of 
heterogenous bonds becomes

 The equilibrium value for the bond concentration nhet is found when Gmix is minimum
 Setting the 1st derivative 0, rearranging and considering Φ=1/Z

𝑇𝑇𝑇𝑇 𝑙𝑙𝑙𝑙 𝑥𝑥𝐴𝐴 −
𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2 + 𝑙𝑙𝑙𝑙 𝑥𝑥𝐵𝐵 −
𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2 − 2𝑙𝑙𝑙𝑙
𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2 = 2𝑁𝑁𝐴𝐴𝑍𝑍𝜔𝜔

𝑒𝑒𝑒𝑒𝑒𝑒
2Ω
𝑅𝑅𝑅𝑅 =

𝑥𝑥𝐴𝐴 −
𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2 𝑥𝑥𝐵𝐵 −
𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2
2 𝑛𝑛ℎ𝑒𝑒𝑒𝑒

2
=

𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐵𝐵𝐵𝐵
𝑛𝑛𝐴𝐴𝐴𝐴 𝑛𝑛𝐵𝐵𝐵𝐵

with𝑁𝑁𝐴𝐴𝑍𝑍𝜔𝜔 = Ω:
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Thermodynamic modeling
Applications of the quasi-chemical approach

 The quasi-chemical approach is particularly effective in modeling non-ideal systems where 
interactions between components lead to significant short-range ordering, clustering, or 
other non-random atomic arrangements. 

 Description of short-range order in Cu-Zn or Ni-Cr alloys

 Description of miscibility gaps in the Ni-Cr and Fe-Cr systems

 Description of ionic systems, such as molten salts or ceramics
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Thermodynamic modeling
Example: assessment of the binary Ge-Ni system
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Thermodynamic modeling
Example: assessment of the binary Ge-Ni system

 Work flow for thermodynamic assessment
 Review of literature data
 Own measurements (phase diagram, calorimetry)
 Thermodynamic modeling

 Modeling of pure elements
 Modeling of solution phases

 Modeling of ordered phases
 Modeling of B8-type non-stoichiometric compound Ni5Ge3
 3-sublattice model (Ge)(Ni)(Va,Ni) 

 Modeling of stoichiometric phases
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Thermodynamic modeling
Example: assessment of the binary Ge-Ni system
 Work flow for thermodynamic assessment

 Parameter optimization ( least-square fitting algorithm in Thermo-Calc)
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Thermodynamic modeling
Example: assessment of the binary Ge-Ni system

 Work flow for thermodynamic assessment
 Comparison simulation vs experimental data
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Thermodynamic modeling
Example: assessment of the binary Ge-Ni system

 Work flow for thermodynamic assessment
 Comparison simulation vs experimental data
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Thermodynamic databases
Steel and Fe-alloys
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Non-equilibrium transformations

 Thermodynamic simulation software tools allow calculating phase equilibria in multi-
component systems as well as equilibrium thermodynamic properties, i.e. complete diffusion 
in the liquid and solid states are assumed

Fe-Ni-Cr/800°C X5CrNiMo18-12-3, influence of Ni
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Non-equilibrium transformations

 Thermodynamic simulation software tools allow calculating phase equilibria in multi-
component systems as well as equilibrium thermodynamic properties, i.e. complete diffusion 
in the liquid and solid states are assumed

 Metals processing includes many non-equilibrium steps
 casting & soldification
 Solutionizing/homogenization heat treatments
 Quenching and precipitation hardening
 Joining (soldering/brazing, diffusion bonding)

 During service of high-performance alloys, diffusion-controlled processes can take place
 Grain coarsening
 Precipitate growth
 Formation of intermetallic compounds at interfaces

 How can these non-equilibrium and time-dependent processes be modeled and simulated?
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The equilibrium solidification model

 Under equilibrium conditions, the solidification path in an alloy
is given by the lever rule

 The equilibrium solute concentrations are
 kC0 ≤ CS ≤ C0

 C0 ≤ CL ≤ C0/k < XE
C0

C0kC0 C0/kCmax

CS

CL

CsoluteCE

v

v

kC0

C0/k

CS

CL

AS = AL

T1-ΔT

T2

T3+ΔT

C

C0
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The Scheil-Gulliver solidification model

 In reality, solidification typically occurs under non-equilibrium conditions, i.e. the 
cooling rate is too high to allow time for complete redistribution of alloying 
elements according to equilibrium

 A qualitative description of the solute redistribution during solidification processes 
is possible with the so-called “Scheil–Gulliver” model, which was first formulated 
in 1913 by Gulliver.

 The basic assumptions of the model are:
 Diffusion of all elements in the liquid phase is infinitely fast
 Diffusion of all elements in the solid phases is zero
 The liquid/solid interface is in thermodynamic equilibrium
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The Scheil-Gulliver solidification model
 The corresponding differential equation for the mass balance 

between solid and liquid was presented by Scheil in 1942:
𝐶𝐶𝐿𝐿 − 𝐶𝐶𝑆𝑆 𝑑𝑑𝑓𝑓𝑠𝑠 = 𝑓𝑓𝐿𝐿 𝑑𝑑𝐶𝐶𝐿𝐿

where CS is the local composition of the solid, CL of the liquid, fS is the 
fraction of solid and 𝑓𝑓𝐿𝐿 is the fraction of liquid

 With the partioning coefficient k = CS/CL and considering that
mass is conserved (𝑓𝑓𝐿𝐿 + 𝑓𝑓𝑠𝑠 = 1), the mass balance may be 
rewritten as 

𝐶𝐶𝐿𝐿 1 − 𝑘𝑘 𝑑𝑑𝑓𝑓𝑠𝑠 = 1 − 𝑓𝑓𝑠𝑠 𝑑𝑑𝐶𝐶𝐿𝐿
 Using the boundary condition 𝐶𝐶𝐿𝐿 = 𝐶𝐶0 at 𝑓𝑓𝑠𝑠 = 0

�
0

𝑓𝑓𝑠𝑠
𝑑𝑑𝑓𝑓𝑠𝑠

1 − 𝑓𝑓𝑠𝑠
=

1
1 − 𝑘𝑘 �

𝐶𝐶0

𝐶𝐶𝐿𝐿
𝑑𝑑𝐶𝐶𝐿𝐿
𝐶𝐶𝐿𝐿

 Integrating results in the Scheil-Gulliver equation for 
composition of the liquid/solid during solidification gives

𝐶𝐶𝐿𝐿 = 𝐶𝐶0 𝑓𝑓𝐿𝐿 𝑘𝑘−1;𝐶𝐶𝑠𝑠 = 𝑘𝑘𝐶𝐶0 1 − 𝑓𝑓𝑆𝑆 𝑘𝑘−1



Advanced Metallurgy – 2024/25 Thermodynamic and kinetic modeling and simulation 38

The Scheil-Gulliver solidification model

 Because of complete diffusion in the liquid, the liquid composition is 
always uniform, although this uniform composition changes as 
solidification continues

 The composition of the solid varies continuously as the solidification 
front advances and the solid retains this compositional variation 
after the front has passed

 The composition of the solid deviates from the equilibrium
composition

 Solidification continues down to the eutectic temperature; when TE 
is reached, the remaining liquid will have the eutectic composition, 
and it solidifies to form a eutectic solid.
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The Scheil-Gulliver module
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The Scheil-Gulliver module
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The Scheil-Gulliver solidification model
Solidification of 1.4404/X3CrNiMo 17-12-2
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Modified Scheil-Gulliver models
S-G with fast diffusers

 Interstitial elements in steel like C, N or O have high diffusion rates
 The assumption of no diffusion in the solid phase during 

solidification is thus not correct at most industrial solidification 
rates.

 Scheil with fast diffusers is a variant of the classic Scheil
simulation that was developed mainly for steel applications

 The assumptions are
 Diffusion of all elements in the liquid phase is infinitely fast
 Diffusion of all elements in the solid phases except the ones defined 

as “fast diffusers” is zero
 Diffusion of the elements defined as “fast diffusers” is infinitely fast in 

the solid phase
 The liquid/solid interface is in thermodynamic equilibrium
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Modified Scheil-Gulliver models
S-G with fast diffusers
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Modified Scheil-Gulliver models
Solidification of Fe-1.4Mn-0.8Si-0.4C

Classical Scheil
Modified Scheil

with C as fast diffuser
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Modified Scheil-Gulliver models
S-G with back-diffusion in primary phase

 This model uses diffusion data from a mobility database to calculate 
back diffusion in the primary phase

 As with the Scheil-Gulliver model, this model assumes infinitely fast 
diffusion in the liquid material, but it allows for limited diffusion in the 
primary phase of the solid material. 

 The assumptions are
 Diffusion of all elements in the liquid phase is infinitely fast
 Diffusion of all elements in the primary solid phase is quantitatively 

calculated using mobility data, a cooling rate, and a domain size (typically 
this will be the secondary arm spacing)

 The liquid/solid interface is in thermodynamic equilibrium
 Using diffusion data from a mobility database, it quantitatively takes 

into account the real back diffusion of all elements in the primary solid 
phase (typically the FCC or BCC phase)
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Modified Scheil-Gulliver models
S-G with back-diffusion in primary phase
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Modified Scheil-Gulliver models
S-G with back-diffusion in primary phase
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Modified Scheil-Gulliver models
Solidification of 1.4404/X3CrNiMo 17-12-2

1000 K/s 0.1 K/s
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Multicomponent diffusion theory

 Fick’s 1st and 2nd law describe the flux of a species k in a concentration gradient (1) and the
solute balance as a function of time (2), respectively

𝐽𝐽𝑘𝑘 = −𝐷𝐷𝑘𝑘
𝜕𝜕𝑐𝑐𝑘𝑘
𝜕𝜕𝑥𝑥 1 and

𝜕𝜕𝑐𝑐𝑘𝑘
𝜕𝜕𝑡𝑡 = 𝐷𝐷𝑘𝑘

𝜕𝜕2𝑐𝑐𝐵𝐵𝑘𝑘
𝜕𝜕𝑥𝑥2 2

 If an alloy contains 2 or more species, the diffusivities Dk not only depend on the
concentration but also on the concentration gradient

 A multicomponent extension to Fick’s 1st law was first expressed by Onsager in 1931, 
postulating that each flux is linearly related to every thermodynamic force

𝐽𝐽𝑘𝑘 = −�
𝑖𝑖=1

𝑛𝑛

𝐿𝐿𝑘𝑘𝑘𝑘′
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑥𝑥

where the 𝜇𝜇𝑖𝑖 terms are the chemical potentials for the various species, which are unique functions of the 
composition (𝜇𝜇𝑖𝑖 = 𝑓𝑓(𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3,…,𝑐𝑐𝑛𝑛) and 𝐿𝐿𝑘𝑘𝑘𝑘′ is the proportionality factor, which depends on the mobility of the 
individual species

 The flux 𝐽𝐽𝑘𝑘 is defined such as ∑𝑘𝑘=1𝑛𝑛 𝑉𝑉𝑘𝑘𝐽𝐽𝑘𝑘 = 0 (Vk: partial molar volume of k)
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Multicomponent diffusion theory

 Generally, it is convenient to express the fluxes as functions of gradients in concentration
rather than gradients in chemical potential

𝐽𝐽𝑘𝑘 = −�
𝑖𝑖=1

𝑛𝑛

𝐿𝐿𝑘𝑘𝑘𝑘′ �
𝑗𝑗=1

𝑛𝑛
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

𝜕𝜕𝑐𝑐𝑗𝑗
𝜕𝜕𝑥𝑥

 With 𝐷𝐷𝑘𝑘𝑘𝑘 = −∑𝑖𝑖=1𝑛𝑛 𝐿𝐿𝑘𝑘𝑘𝑘′
𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

(unreduced diffusivities)

𝐽𝐽𝑘𝑘 = −�
𝑗𝑗=1

𝑛𝑛

𝐷𝐷𝑘𝑘𝑘𝑘
𝜕𝜕𝑐𝑐𝑗𝑗
𝜕𝜕𝜕𝜕

 The  𝜕𝜕𝜇𝜇𝑖𝑖
𝜕𝜕𝑐𝑐𝑗𝑗

values are the so-called thermodynamic factors 

 the diffusivities consist of a thermodynamic and a kinetic part
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Kinetic modeling
 Atomic mobilities are purely kinetic, element specific properties, defined as the velocity of a 

species per unit force (unit: 𝑚𝑚
2/𝑠𝑠

𝐽𝐽/𝑚𝑚𝑚𝑚𝑚𝑚
)

 The mobility coefficient for an element B in metallic matrix can be written as

𝑀𝑀𝐵𝐵 =
𝑀𝑀𝐵𝐵
0

𝑅𝑅𝑅𝑅
exp

−𝑄𝑄𝐵𝐵
𝑅𝑅𝑅𝑅

where 𝑀𝑀𝐵𝐵
0 is the compositional-dependent frequency factor and 𝑄𝑄𝐵𝐵 the activation enthalpy

 The composition-dependency can be represented as a linear combination of the values at 
each endpoint of the composition space and a Redlich-Kister term

Φ𝐵𝐵 = �
𝑖𝑖
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𝑖𝑖 + �
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𝑗𝑗>𝑖𝑖

𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗 �
𝑟𝑟=0

𝑚𝑚
𝑟𝑟𝐴𝐴𝐵𝐵

𝑖𝑖,𝑗𝑗 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗
𝑟𝑟

Φ𝐵𝐵 represents 𝑙𝑙𝑙𝑙𝑀𝑀𝐵𝐵
0 or 𝑄𝑄𝐵𝐵

Φ𝐵𝐵
𝑖𝑖 is the value of Φ𝐵𝐵 for pure i and thus represents one of the endpoints in the composition space

𝑟𝑟𝐴𝐴𝐵𝐵𝑖𝑖 are binary interaction parameters, the commas separating different species interacting with each other
𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are mole fractions for elements i and j, respectively

 As in the case of thermodynamic data, the model parameters Φ𝐵𝐵
𝑖𝑖 , 𝑟𝑟𝐴𝐴𝐵𝐵𝑖𝑖 ,… are determined by

an optimization procedure (considering experimental data)
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Kinetic modeling

 The multi-component diffusion theory has been implemented in DICTRA (now TC diffusion
module)

 The mobilities are stored in the mobility databases
 The reason to store individual mobilities rather than interdiffusion coefficients is that in an n-

component system, there are n mobilities and (n-1)2 interdiffusion coefficients
 The mobilities are related to the interdiffusion coefficients according to

𝐿𝐿𝑘𝑘𝑘𝑘′ = �
𝑖𝑖=1

𝑛𝑛

𝛿𝛿𝑖𝑖𝑖𝑖 − 𝑐𝑐𝑘𝑘𝑉𝑉𝑖𝑖 𝑐𝑐𝑖𝑖𝑦𝑦𝑣𝑣𝑣𝑣𝑀𝑀𝑖𝑖

𝛿𝛿𝑖𝑖𝑖𝑖 is the Kronecker delta, i.e. 𝛿𝛿𝑖𝑖𝑖𝑖 = 1 when j=k and 𝛿𝛿𝑖𝑖𝑖𝑖 = 0 otherwise
𝑐𝑐𝑘𝑘 and 𝑐𝑐𝑖𝑖 are the amounts of k and i per unit volume
𝑉𝑉𝑖𝑖 is the partial molar volume of element i
𝑦𝑦𝑣𝑣𝑣𝑣 is the fraction of vacant lattice sites on the sublattice where i is dissolved
𝑀𝑀𝑖𝑖 is the mobility of i when i is interstitial and the mobility divided by 𝑦𝑦𝑣𝑣𝑣𝑣 when i is substitutionally dissolved
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Kinetic modeling withe Thermo-Calc
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The diffusion simulation module
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The diffusion simulation module
Example: Brazing of diamond (C) to steel
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Vacuum brazing 930 ºC /10 min
Filler: Cu-14.4Sn-10.2Ti-1.5Zr (mass %) 
Base material: X2Cr Ni Mo 18 14 3  stainless steel (AISI 316)
Thickness of brazing layer: ~50 µm

TiC

(Cu,Sn)2(Ti,Zr)

(Cu,Sn)

(Fe,Cr)2Ti

Brazing alloy

56

The diffusion simulation module
Example: Brazing of diamond (C) to steel
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Thermodynamics Kinetics/Diffusion
Diffusion 
equation
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The diffusion simulation module
Example: Brazing of diamond (C) to steel
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 Simulated influence of alloy 
composition + experimental results

 Simulated influence of amount of Ti 
on TiC growth in brazing diamond at 
930°C

/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./ 

The diffusion simulation module
Example: Brazing of diamond (C) to steel
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 Simulated influence of Ag-based 
filler alloy

 TiN reaction layer growth during 
brazing of AlN ceramics

/W.J. Zhu, C. Leinenbach et al, Comp. Mater. Sci. 78 (2013) 74./ 

The diffusion simulation module
Example: Brazing of diamond (C) to steel
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The diffusion simulation module
Other examples

Calculated C-concentration profiles after 100, 
1000, 5’000 and 18’000 s at 900°C in a 

carburizing atmosphere

Calculated volume fraction of cementite as a 
function of time, during austenitization of an 

Fe-2.06 at.% Cr-3.91 at.% C alloy at 910°C

/A. Borgenstam et al., Journal of Phase Equilibria 21(3) (2000) 
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Simulation of precipitation reactions

 Phase transformations start with the formation of stable nuclei of a size larger than the 
critical radius grown at expenses of available elements in the matrix. 

 The growth of the nucleus ends when the thermodynamic equilibrium is reached, i.e. 
chemical potentials of each element are equal anywhere in the system.

 Assuming spherical nuclei, the nucleation rate can be described as

𝐽𝐽 𝑡𝑡 = 𝐽𝐽𝑠𝑠𝑒𝑒𝑒𝑒𝑒𝑒 −
𝜏𝜏
𝑡𝑡

𝐽𝐽𝑠𝑠 = 𝑍𝑍𝛽𝛽∗𝑁𝑁0𝑒𝑒𝑒𝑒𝑒𝑒 −
Δ𝐺𝐺∗

𝑘𝑘𝑘𝑘

Δ𝐺𝐺∗ =
16𝜋𝜋𝜎𝜎3

3Δ𝐺𝐺𝑉𝑉𝛼𝛼→𝑃𝑃

𝐽𝐽𝑠𝑠: steady state nucleation rate
𝜏𝜏: incubation time

𝑍𝑍: Zeldovich factor
𝛽𝛽∗: rate at which atoms are attached to 
critical nucleus
𝑁𝑁0: number of available nucleation sites 
per unit volume
Δ𝐺𝐺∗: nucleation barrier

𝜎𝜎: interfacial energy
Δ𝐺𝐺𝑉𝑉𝛼𝛼→𝑃𝑃: driving force for formation of 
precipitates P from α matrix
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The precipitation module
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The precipitation module
Example: Carbide precipitation in Fe shape memory alloy
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Learning objectives
 Thermodynamic and kinetic modeling

 Understand the key concepts of thermodynamic modeling, including solution phases and the 
mathematical description of phase properties.

 Differentiate between ideal, regular, and real solution models and their respective assumptions.
 Redlich-Kister formalism for mathematical description of interactions
 Understanding the concepts of advanced solution models: (sub)n-regular solution model; sub-lattice 

model; quasi-chemical model
 Understanding the concepts of equilibrium and non-equilibrium solidification models:

 Lever rule for equilibrium solidification
 Scheil-Gulliver solidification for rapid cooling scenarios
 Advanced variations of Scheil-Gulliver models (with fast diffusers, e.g., interstitial elements; with back-diffusion 

in primary solid phases.

 Practical applcations
 Use Thermo-Calc to assess thermodynamic and kinetic behaviors in multicomponent systems.

 Casting and solidification, heat treatments (e.g., solutionizing, quenching, and precipitation hardening), joining 
processes (e.g., brazing, soldering, and diffusion bonding), grain growth


	FS 2024/25�MSE-422 – Advanced Metallurgy�11-Thermodynamic and kinetic modeling and simulation
	Thermodynamic modeling�
	Thermodynamic modeling�Pure elements
	Thermodynamic modeling�Stoichiometric compounds
	Thermodynamic modeling�Example: Gibbs energies of phases in pure iron
	Thermodynamic modeling�Ideal solutions
	Thermodynamic modeling�Regular solutions
	Thermodynamic modeling�Regular solutions
	Thermodynamic modeling�Real solutions
	Thermodynamic modeling�Real solutions – the (sub)n-regular solution model
	Thermodynamic modeling�Real solutions – the (sub)n-regular solution model
	Thermodynamic modeling�Example: influence of interaction parameters on phase stabilities
	Thermodynamic modeling�Example: influence of interaction parameters on phase stabilities
	Thermodynamic modeling�Real solutions – extrapolation to higher order systems
	Thermodynamic modeling�Real solutions – the sublattice model
	Thermodynamic modeling�Real solutions – the sublattice model
	Thermodynamic modeling�Real solutions – the sublattice model
	Thermodynamic modeling�Applications of the sublattice model
	Thermodynamic modeling�Real solutions – the quasi-chemical approach
	Thermodynamic modeling�Real solutions – the quasi-chemical approach
	Thermodynamic modeling�The quasi-chemical approach – enthalpy term
	Thermodynamic modeling�The quasi-chemical approach – entropy term
	Thermodynamic modeling�The quasi-chemical approach
	Thermodynamic modeling�The quasi-chemical approach
	Thermodynamic modeling�The quasi-chemical approach
	Thermodynamic modeling�Applications of the quasi-chemical approach
	Thermodynamic modeling�Example: assessment of the binary Ge-Ni system
	Thermodynamic modeling�Example: assessment of the binary Ge-Ni system
	Thermodynamic modeling�Example: assessment of the binary Ge-Ni system
	Thermodynamic modeling�Example: assessment of the binary Ge-Ni system
	Thermodynamic modeling�Example: assessment of the binary Ge-Ni system
	Thermodynamic databases�Steel and Fe-alloys
	Non-equilibrium transformations
	Non-equilibrium transformations
	The equilibrium solidification model
	The Scheil-Gulliver solidification model
	The Scheil-Gulliver solidification model
	The Scheil-Gulliver solidification model
	The Scheil-Gulliver module
	The Scheil-Gulliver module
	The Scheil-Gulliver solidification model�Solidification of 1.4404/X3CrNiMo 17-12-2
	Modified Scheil-Gulliver models�S-G with fast diffusers
	Modified Scheil-Gulliver models�S-G with fast diffusers
	Modified Scheil-Gulliver models�Solidification of Fe-1.4Mn-0.8Si-0.4C
	Modified Scheil-Gulliver models�S-G with back-diffusion in primary phase
	Modified Scheil-Gulliver models�S-G with back-diffusion in primary phase
	Modified Scheil-Gulliver models�S-G with back-diffusion in primary phase
	Modified Scheil-Gulliver models�Solidification of 1.4404/X3CrNiMo 17-12-2
	Multicomponent diffusion theory
	Multicomponent diffusion theory
	Kinetic modeling
	Kinetic modeling
	Kinetic modeling withe Thermo-Calc
	The diffusion simulation module
	Foliennummer 55
	Foliennummer 56
	Foliennummer 57
	Foliennummer 58
	Foliennummer 59
	The diffusion simulation module�Other examples�
	Simulation of precipitation reactions
	The precipitation module
	The precipitation module�Example: Carbide precipitation in Fe shape memory alloy
	Learning objectives

